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Abstract Geometric convergence to 0 of the probability the goal has not been encountered
by the nth generation is established for a class of genetic algorithms. These algorithms
employ a quickly decreasing mutation rate and a crossover which restarts the algorithm in a
controlled way depending on the current populations and restricts execution of this crossover
to occasions when progress of the algorithm is too slow. It is shown that without the crossover
studied here, which amounts to a tempered restart of the algorithm, the asserted geometric
convergence need not hold.
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1 Introduction

This paper is part of a continuing investigation by the authors of the properties of restarted
stochastic search algorithms initiated in [2] and [4]. In the former paper, deterministic
search, like steepest gradient is addressed and in the latter simulated annealing. In both,
restarting is initiated when lack of improvement in the objective is observed. Here, a similar
strategy is investigated in the context of genetic algorithms. Just as in the two former cases,
geometric convergence toward the goal is established rigorously and the lack of this property
is proven for the ordinary non-restarted version. In the spirit of the technique of [5] used
in the study of parallelization, the Perron-Frobenius theory of positive operators is utilized
in [2] to prove geometric convergence; in [4], although renewal theory is employed, a result
which extends the usual Perron-Frobenius theory is established and is used here to establish
the rapid convergence of the restarted GA under both constant probability of application
and under random restarting based upon progress of the algorithm towards the goal.

In all these papers, including this one, there is a substantial departure from the classical
question of convergence of the distribution of states to an asymptotic distribution which
has support on the goal states to one involving whether or not the goal state has been
observed up to the present time. Thus instead of asking whether or not the rules lead to
an asymptotic distribution (of the chain) on goal states, the question is one of whether the
goal state appears among the states visited and the rate of convergence of the probability
of the complement of this event to 0. It is shown here, as in the other papers, that the
rate of convergence to 0 is geometric even though the mutation rate is being driven to
0 geometrically fast. Slow convergence of the mutation rate to 0 can result in jumping
away from good solutions prematurely while rapid convergence to 0 can result, without an
appropriate crossover rule, to getting hung up at local extrema. Here, a crossover called
wrong side of the tracks, yields geometric convergence to 0 as n → ∞ of the probability the
goal has not been encountered by epoch n. Wrong side of the tracks crossover means that
a member of the “elite” population mates with a member of the general population, and is
called, for obvious reasons, “tempered restart.” A general feature of all three investigations
is that the algorithms preferred are those which cycle through good states rapidly rather
than settle down predictably to a prescribed set.

Details of the method are provided below, but informally, it consists of evolving a popu-
lation of fixed size using the three mechanisms of random selection, crossover, and mutation.
Given a current population, the next population is the outcome of

1. (roulette wheel selection) a multinomial experiment in which the probabilities are de-
termined by the fitness of the current population,

2. (crossover) the possible mating of a member of the current population with a member
of the population at large, and

3. (mutation) random mutation of the current members by flipping bits in a binary rep-
resentation of the population members.
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Of interest is whether or not the history of populations has ever, up to that point, included
a member of the goal state in which an objective function achieves its maximum value.
Since the fitnesses of the population members are calculated at each new generation the
realization of such an event means that the maximum of the objective has been identified.
It is important to distinguish our use of the word convergence and the common use in the
area of GA; convergence of the tail probability (the probability the goal has not yet been
encountered) to zero is studied here while the word convergence in typical GA-parlance
refers to the distribution of the members of the population itself. So rather than asking
about the asymptotic form of the population, whether it is concentrated on goal states or
places positive probability on goal states, our emphasis is on cycling through states. It is
clear that one would like the algorithm to head for maxima of the objective as quickly as
possible and not to get trapped.

This is a shared goal with the classical analysis typified in the statement from Wikipedia,
“A very small mutation rate may lead to genetic drift (which is non-ergodic in nature) or
premature convergence of the genetic algorithm in a local optimum. A mutation rate that
is too high may lead to loss of good solutions. There are theoretical but not yet practical
upper and lower bounds for these parameters that can help guide selection.” What we shall
It will be shown here that one can send the mutation rate to zero quickly and still not have
premature convergence, as long as the crossover described above is employed. It is also
shown that without this crossover, sending the rate to zero even much more slowly results
in premature convergence with positive probability; thus the tail probabilities need not even
converge to 0 even keeping the mutation rate much higher.

2 Notation

Principe [1].

The underlying space on which the strictly positive function R is to be maximized is
S = {0, 1}L. We refer to the components, or bits, of i ∈ S by ik, 0 ≤ k ≤ L. Let M ,
the population size, be a positive integer fixed throughout. Denote by Ξ the collection of
probability distributions ξ(·) on S and by Ξ0 the subset thereof for which Mξ(i) = m(i) ≥ 0
are integers for all i ∈ S. The set Ξ0 is in one to one correspondance with the state space of
the GA, the “populations” of the algorithm, and is denoted in [1] as

S′ = {m̄ = (m(0), m(1), . . . , m(2L − 1)) :
N−1∑
j=0

m(j) = M, m(j) ≥ 0},

where N = 2L.

For ξ ∈ Ξ, ν ∈ Ξ, and α ∈ [0, 1] consider the operator τα,ν : Ξ → Ξ defined by

τα,νξ(k) = α
∑

i

∑
j

E[I(i, j, k, W )]ξ(i)ν(j) + (1 − α)ξ(k). (1)
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This is the crossover operator and for the choice ν = ξ agrees in essence with that defined
in [1] between their equations (6) and (7). The random variable W , the crossover point,
is uniformly distributed on {0, 1, . . . , L} and the expectation over W is of I, the indicator
function satisfying I(i, j, k, w) ∈ {0, 1}

where for w = 1, . . . , L − 1 it is 1 if k = (i1, . . . , iw, jw+1, . . . , jL), for w = 0, if k = j, and
for w = L, if k = i.

Also define for β ∈ [0, 1] the operator µβ : Ξ → Ξ defined by

µβξ(i) =
N−1∑
j=0

βH(i,j)(1 − β)L−H(i,j)ξ(j), (2)

where H(i, j) =
∑L

k=1 |ik − jk| is the Hamming distance between i = (i1, i2, . . . , iL) and
j = (j1, j2, . . . , jL) in S. This is the mutation operator on S′ × S′.

The selection operator ψ : Ξ → Ξ is defined by

ψξ(i) =
ξ(i)R(i)∑N−1

j=0 ξ(j)R(j)
. (3)

The operator Ψβ : Ξ × Ξ → [0, 1] defined by

Ψβ(ξ2, ξ1) =

(
M

Mξ2(0), Mξ2(1), . . . , Mξ2(N − 1)

) N−1∏
j=0

(
µβτψξ1(j)

)Mξ2(j)
, (4)

where
(

a
b1,...,bj

)
= a!

b1!...bj ! is the multinomial coefficient, defines a transition probability from

ξ1 ∈ Ξ to ξ2 ∈ Ξ0, hence also from Ξ0 into itself. Since for scalars t > 0 ψ(tξ) = ψξ, there

is an equivalent representation in terms of a transition matrix Q(τ)
β on S′ × S′ whose entries

are

q(τ)
β (m̄2|m̄1) =

(
M

m2(0), m2(1), . . . , m2(N − 1)

) N−1∏
j=0

(
µβτψm1(j)

)m2(j)
, (5)

where m̄j = (mj(0), mj(1), . . . , mj(N − 1)) ∈ S′ and

Ψβ(ξ2, ξ1) = q(τ)
β ((Mξ2(0), . . . , Mξ2(N − 1))|(Mξ1(0), Mξ1(1), . . . , Mξ1(N − 1))).

The matrix Qβ is square and stochastic with
(

M+N−1
M

)
rows.

3 Fixed probability of crossover

In this section the consequences of sending the mutation rate to zero geometrically fast are
investigated. It is shown that by employing a crossover scheme, called wrong-side-of-the-
tracks ( wst-crossover), which allows “tempered restarting” of the GA, a cross between a
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member of the current elite population with a randomly chosen member of S, the probability
the goal has not been encountered by the nth generation decreases to zero geometrically
quickly while this need not occur for the usual crossover scheme.

Suppose it is desired to maximize the function R on the set S. It is shown that employing
the fixed crossover τα,υ, where ν = υ, the uniform distribution on S, and α ∈ (0, 1) is
arbitrary, the sequence of states (distributions m̄n ∈ S′) of the Markov chain whose transition
matrix at the nth epoch is Qβn, where βn = (1 + λ2)−n, λ (= 0, has the property that the
probability the populations up to epoch n have excluded a point at which R achieves its
global maximum on S decreases to 0 as ηn for some η < 1. Thus “rapid” identification of the
global optimum is assured even though the mutation probability is decreasing to 0 rapidly.
It is shown, furthermore, that for any α ∈ (0, 1) this fails for the traditional crossover τα,ξ.
Thus without the crossover which includes the possibility of crosses with members of the
non-elite population, mutation rates tending to 0 this rapidly, and even more slowly, result
in a positive probability of never seeing the global maximum of the function.

3.1 Deleted transition matrix

In this section it is assumed without loss of generality that the function R assumes its
maximum value at j = 0 so that R(0) > R(j) for j = 1, . . . N − 1. Consider the set X
consisting of points

{x = (m(1), m(2), . . . , m(N − 1)) : m(0) = 0, (m(0), m(1), . . . , m(N − 1)) ∈ S′}
and, fixing τ, define the deleted transition matrix Pβ on X × X as the submatrix of Qβ

restricted to the states in X by

pβ(x2|x1) = q(τ)
β ((0, x2)|(0, x1)).

Note that qβ are all polynomials in β of degree ML and write

qβ(n̄|m̄) =
ML∑
j=0

aj(n̄, m̄)βj.

The limiting matrix is P = limβ→0 Pβ = P0 and plainly

p(x2|x1) = a0((0, x2), (0, x1)).

and
pβ(x2|x1) − p(x2|x1) = βa1((0, x2), (0, x1)) + O(β2).

3.2 Geometric convergence and wst- crossover

We shall employ Lemma A2 of [4] to prove that shrinking the mutation probability quickly
does not hinder the rapid identification of the goal state as long as wrong side of the tracks
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crossover (wst-cross) is used, but that if one employs ordinary crossover as described in [1]
(for example, there is even a positive probability that the goal state will never be identified).
The result quoted from [4] runs as follows.

Lemma 1 (A2 of [4]) If for some γ > 1,
∑

n≥1 γn‖Pn − P‖ < ∞ and for some k ≥ 1, P k

has norm δ < 1, then there is a constant K < ∞ and an η ∈ (0, 1) such that for all n and m

‖PmPm+1 · · · Pm+n−1‖ < Kηn. (6)

We can now prove that by “restarting” the GA, that is by allowing a crossover of any of the
current members of the elite population with any member of the space S, a mutation rate
tending to zero geometrically fast does not hinder rapid identification of the extremal value
of the objective function.

Theorem 1 Under the crossover measure τα,υ, α ∈ (0, 1) and the geometrically decreasing
mutation rate βn = (1 + λ2)−n there is an η < 1 and constant K < ∞ such that

P [∩n
j=1{mj(0) = 0}] ≤ Kηn.

Proof: Since
π′P1P2 . . . Pne = P [∩n

j=1{mj(0) = 0}],

where e is the deleted vector of ones and π is the deleted vector of initial probabilities, it
suffices to prove the truth of (6). The norm of P is maxx∈X

∑
y∈X p(y|x); the norm of Pβ−P is

maxx∈X

∑
y∈X |pβ(y|x)−p(y|x)| and is clearly no greater than β(A+O(β)) for some A < ∞.

For each x ∈ X,
∑

y∈X p(y|x) is 1 − πx, where πx is the probability P [m(0) > 0|(0, x)].

Clearly the conditions of the lemma will be satisfied if πx > 0 for each x ∈ X since this
is a finite set. Since

τψ(m̄)(k) = α
∑
i∈S

∑
j∈S

E[I(i, j, k, W )]

N
ψ(m̄)(i) + (1 − α)ψ(m̄)(k),

P [W = 0] = 1/(L + 1) > 0, and υ(0) = 1/N > 0 one has for k = 0 and any m̄ that

τψ(m̄)(0) ≥ αN−1(L + 1)−1.

Thus for any x ∈ X, µ0τψ((0, x))(0) = πx ≥ αN−1(L + 1)−1 > 0. !

3.3 Non-convergence for ordinary crossover

If one sends the mutation rate to 0 geometrically fast (or even more slowly - see below) and
uses crossover τα,ξ as in Davis and Principe [1], then the geometric convergence of the tail
probabilities, indeed the convergence to zero at all, need not hold. In [1] the mutation
probability pm(k), called here βk, is sent to 0 with the generation count k. They liken this to
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cooling in a simulated anneal and show their algorithm converges asymptotically to one of
the absorbing states of the chain, a population all of whose members are the same, provided
cooling is slow enough. A rate guaranteeing that type of convergence is βk = k−ML where
M is population size and L is the string size. Let L = 3 and M = 4 and let the algorithm
start in the state m̄ = (M, 0, . . . , 0) ∈ R8. Thus the entire population consists of the element
(0, 0, 0). Then under their selection rule (also called roulette wheel selection and the same
as our ψ) including crossover, the same population will result on every generation unless
there is a mutation event. But in fact there is a positive probability this will not occur.
The probability that the algorithm remains in this starting population indefinitely is given
by

Πk≥1(1 − βk)

and this infinite product is zero if and only if the infinite sum
∑

k≥1 βk is unbounded. How-
ever, if βk converges to zero even as slowly as their rate and certainly as fast as geometrically,
this infinite sum is finite.

4 Process initiated crossover

In the last section it was shown that rapid convergence of the mutation rate to zero, and
hence increasing protection from taking wrong paths deep into the search, need not hinder
a rapid encounter with the goal. On the other hand, the crossover scheme by which this
is accomplished is applied with constant probability over time, rather than when needed;
namely, when progress in the algorithm has slowed or ceased. In this section a scheme is
proposed, called r-cross, which executes a crossover only when necessary, not with constant
probability over time, but depending on the progress of the algorithm, and it is shown that
even with geometrically decreasing mutation rates, this new method of initiating a crossover
results in rapid encounter of the goal.

4.1 Motivation for r-cross

A Bayesian argument is offered in favor of the rule we shall adopt. Consider a situation in
which one observes iid B(1, p) random variables (Bernoulli random variables) and in which
there is a prior distribution πα,β = Be(α, β) on the success probability p, a Beta distribution.
After the observations x1, x2, . . . , xn the conditional probability distribution

ξ(p|x1, . . . , xn) ∝ pα−1(1 − p)β−1
n∏

j=1

pxj (1 − p)1−xj

so p|x1, . . . , xn ∼ Be(α + sn, β + n − sn), where sn =
∑n

j=1 xj. In particular, if x = 1
corresponds to “a higher value is observed than any seen to date” and x = 0 corresponds to
the complement, and if no improvement over a span of n trials has been seen (so sn = 0)
then the posterior distribution of p, the probability of a better value on the next trial is
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ξn(p) = Be(α, β + n). Taking α = β = 1 the prior density reflects no knowledge of the
underlying probability p; it is uniform and the posterior density is simply

fn(p) = (n + 1)(1 − p)nI(0,1)(p).

Thus, for example, the posterior probability assigned to the event that the probability of
seeing anything better is less than 0.01 after not having seen an improvement in 10 trials
is

∫ 0.01

0 f10(p)dp = −(1 − p)11|0.01
0 = 1 − (0.99)11 ≈ 1 − 0.895 = 0.100466. After 50 trials it

would be approximately 0.4 and after 100 it would be roughly 0.63. In fact, the posterior
assessment that the probability of seeing anything better is no more than c/n after not
having seen anything better in n − 1 trials is for large n.

1 − (1 − c

n
)n ≈ 1 − e−c.

This suggests the following rule for executing a crossover, although of course, the situation
is more complicated in the case of GA.

Crossover Heuristic: Assuming a large posterior probability, say 0.85, is desired that
the probability of seeing anything better is small, say less than 0.01, take 1 − e−c = 0.85,
solve for c obtaining in this case c = 1.897 and initiate a crossover if c/n < 0.01; that is, if
no improvement has been seen in 1.897/0.01 = 189.7 trials.

Less stringent requirements lead to more frequent crossovers: if a posterior probability of,
say 0.5, is desired that the probability of there being a better value forthcoming is less than,
say 0.3, then initiate a crossover if 1 − (1 − 0.3)n+1 < 0.5, or whenever an improvement has
not been seen in 1 trial.

4.2 State space and transition matrix for r-cross

As above, denote distributions on the set S = {0, 1}L by

m̄ = (m(0), m(1), . . . , m(2L − 1)),

where m(j) are all non-negative integers,
∑N

j=0 m(j) = M, and N = 2L − 1. The space
of distributions on S is denoted S′. Our state space in this section is the set C = (S′)r

consisting of r-vectors c = (m̄1, m̄2, . . . , m̄r). We think of the subscripts as increasing with
time so the only transitions between states c1 and c2 with non-zero probabilities are those
when the c’s are of the form

c1 = (m̄1, m̄2, . . . , m̄r−1, m̄r) → (m̄2, m̄3, . . . , m̄r, m̄r+1) = c2

so that the last r − 1 distributions of c1 are shifted to the left and a new one is added in the
last position to form c2. To describe the transition probability, introduce the functions ∆(c),
on C and σ defined on S′. For m̄ ∈ S′, retaining the notation R for the objective function,
let

σ(m̄) = max{R(j) : m(j) > 0, 0 ≤ j ≤ N}.
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The function ∆ takes values in {0, 1} and is 1 at c = (m̄1, . . . , m̄r) iff

max
2≤j≤r

σ(m̄j) > σ(m̄1).

Thus ∆ simply indicates whether or not the supports of the measures on that stretch of r
distributions have seen any improvement in the objective function R (assuming the maximum
of R is sought).

Denoting the crossover to be applied in this section, determined simply by the failure
to improve the objective over the course of r generations, as τ = τα=1,ν=υ, for c1 such
that ∆(c1) = 1, where c1 = (m̄n+1, . . . , m̄n+r), the transition probability from c1 to c2 =
(m̄n+2, . . . , m̄n+r, m̄n+r+1) is given by

a(m̄n+1+r|m̄n+r) = q(e)
0 (m̄n+1+r|m̄n+r) =

(
M

m̄n+r+1

) N−1∏
j=0

(
ψ(m̄n+r)(j)

)mn+r+1(j)
,

above since no crossover (τ = e, the identity) is applied in this case and µ0 = e. The
transition in case ∆(c1) = 0 is

b(m̄n+1+r|m̄n+r) = q(τ)
0 (m̄n+1+r|m̄n+r) =

(
M

m̄n+r+1

) N−1∏
j=0

(
τψ(m̄n+r)(j)

)mn+r+1(j)
.

Thus for the case of r-cross, one can write the transition probability on C × C as

T (c2|c1) =
(
a(c2,r|c1,r)

)∆(c1) (
b(c2,r|c1,r)

)1−∆(c1)
,

where cj = (cj,1, cj,2, . . . , cj,r), if c2,i = c1,i+1 for i = 1, 2, . . . r − 1 and 0 otherwise.

4.3 Deleted transition and geometric convergence for r- cross

Introduce the deleted transition matrix Σ defined on D × D, where D = Xr, by

Σ(d2|d1) = T (((0, d2,1), . . . , (0, d2,r))|((0, d1,1), . . . , (0, d1,r))).

The chain on C × C with positive mutation rate has aβ(m̄|n̄) = q(e)
β (m̄|n̄) and bβ(m̄|n̄) =

q(τ)
β (m̄|n̄) and we denote by Tβ its transition matrix and by Σβ the corresponding deleted

transition matrix.

For any sequence c = (c1, . . . , cr) of states in S′ let Z(c) = 0 if cj(0) = 0 for every
j = 1, . . . , r and otherwise Z(c) = 1. Letting the chain’s state at generation j be Cj, the
main theorem can now be proven.

Theorem 2 Under r-cross and shrinking the mutation rate according to βn = (1 + λ2)−n,
one has for some K < ∞ and η < 1

P [∩n
j=1{Z(Cj) = 0}] ≤ Kηn. (7)
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Proof: With an initial probability vector π, a deleted vector π̂, and the deleted vector of
ones, 1̂, since

π̂′
r∏

i=1

P (e)
βi

n∏
j=r+1

Σβj 1̂ = P [∩n
k=1{Z(Ck) = 0}]

it suffices to prove for some γ > 1, positive integer k and δ < 1 that
∑

j≥1 γj‖Σβj − Σ‖ < ∞
and ‖Σk‖ < δ.

Consider first
‖Σβ − Σ‖ = max

d∈D

∑
d′∈D

|Σβ(d′|d) − Σ(d′|d)|.

Since for d1, d2 ∈ D one has aβ((0, d2,r)|(0, d1,r)) a polynomial in β of degree ML whose
value at β = 0 is a((0, d2,r)|(0, d1,r)) and similarly for bβ, it follows that for some A <
∞, ‖Σβ − Σ‖ = β(A + O(β)).

Next, taking k = (N − 1)(r − 1) + 1, it is shown that ‖Σk‖ < 1. Since D is a finite
set and ‖Σk‖ = maxd∈D

∑
d′∈D Σk(d′|d), it suffices to prove that for each d ∈ D one has∑

d′ Σk(d′|d) < 1. The latter is simply the probability under no mutation that starting with
an element d ∈ D, d = ((0, x1), (0, x2), . . . , (0, xr)), xi ∈ X one passes through successive
generations of the form (0, xr+1), . . . (0, xNr) to arrive at d′ = ((0, x(N−1)r+1), . . . (0, xNr)). It
will be shown that this probability is less than 1.

If ∆(d) = 0 then there will be a wst- crossover to get to the r + 1st generation and since
∪x∈X{C2,r = (0, x)} = {C2,r(0) = 0} if one has P [C2,r(0) > 0|d] > 0 then the claim will
be shown for d such that ∆(d) = 0, for then it will have been shown that the probability
one exits D immediately and thereby includes the goal state in the elite set at that stage is
positive so the probability of remaining in D is less than 1. Now the marginal distribution
of C2,r(0)|d is binomial, B(M, πd) where πd = µ0τψ((0, xr))(0). As before, a lower bound on
this quantity, because of wst-crossover, is N−1(L + 1)−1 uniformly in xr ∈ X and hence in
d ∈ D. This concludes the case ∆(d) = 0.

For ∆(d) = 1 there are r − 1 cases: the improvement occurs last at index 2, 3, . . . , r and
it will be shown that in this instance, a stretch of length (N − 1)(r − 1) + 1 beginning at
our first index 1 must encompass either a transition out of the states in D or at least one
stretch of length r over which no improvement in the objective occurs. Indeed, the most
favorable circumstance in generating long stretches of no improvement may be described in
terms of the ordered values R1 < R2 < . . . , RN of the objective function. We could have R1

as our first maximum and repeated r − 1 times, then R2 repeated r − 1 times, so that in any
sequence of (N − 1)(r − 1) + 1 states, one must have exited the suboptimal states or must
have encountered a stretch of length at least r over which no improvement was observed.
As the former is precluded in this case of examining the probabilities of transitions among
the states D, such a stretch must occur. As has been seen immediately above, once such a
stretch occurs, there is a positive probability of leaving D. One concludes, therefore, that
‖Σ(N−1)(r−1)+1‖ < 1. !
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5 General r-cross

Geometric convergence of tail probabilities also holds for more general schemes for both
mutation and crossover initiated after a fixed number of non-improvements.

5.1 General crossover

Suppose there is a family of m mappings F (v), v = 1, . . . , m from S × S into S. Denoting,
for j ∈ S fixed, by F (v)

j the transformation from S into S defined by F (v)
j (i) = F (v)(i, j) the

family {F (v)}m
v=1 of transformations will be said to be adequate if for every k ∈ S and j ∈ S

one has

∪m
v=1

(
F (v)

j

)−1
(k) (= ∅. (8)

Define the associated crossover operator on Ξ by

τξ(k) =
m∑

v=1

∑
i∈S

∑
j∈S

δ(v)ν(i)ξ(j)IAv(k)(i, j), (9)

where Av(k) = {(i, j) ∈ S2 : F (v)(i, j) = k}. Geometric convergence will still hold under
r-cross using this crossover under conditions which also amount to tempered restarting.
Specifics are in Theorem 3, whose proof can be carried out just as in the case of Theorem 2.

Theorem 3 If the family F (v), v = 1, . . . , m satisfies (8) then under r-cross with τ as defined
in (9) and shrinking the mutation rate according to βn = (1+λ2)−n, one has for some K < ∞
and η < 1 that (7) holds if δ(v) > 0 for v = 1, . . . , m and ν(i) > 0 for every i ∈ S.

Proof: Observe that because of (8), for each k, j ∈ S×S one must have
∑m

v=1 IAv(k)(i, j) > 0
for some i ∈ S. Under the conditions of the theorem, no choice of ξ ∈ Ξ yields τξ(k) = 0;
in fact, these quantities are uniformly bounded below over ξ ∈ Ξ and k ∈ S by a positive
quantity. This bound now plays the same role in the proof as did N−1(L + 1)−1 in the proof
of Theorem 2; otherwise, the proof is the same. !

In the case of wst-cross, for example, ν(i) = N−1 > 0 and δ(v) = 1/m, where m = L + 1
and wst-cross satisfies (8) trivially since for one of the v’s we had F (v)(i, j) = i for all i, j.
Obviously, many other crossing schemes are covered by Theorem 3.

5.2 General mutation

The essential feature of the mutation operator µβ is that it satisfy

‖µβ − e‖ = β(A + O(β)), (10)

where e is the identity. As long as this feature holds then under r-cross with an adequate
crossover scheme, the convergence of tail probabilities for geometrically decreasing mutation
rates will itself be geometric.

13



6 Examples

In this section some examples are provided to illustrate the ideas of the previous sections.

Example 1 In this example the success of GA’s in maximizing the function f defined in
(11) is investigated.

The number of bits is L = 10 so that, interpreting i ∈ S as a binary representation, i =
0, 1, . . . , 1023. The objective function (called R above) is f given by

f(i) =
100

1 + i7/10
[1 + cos(

π(i − 60)

50
)] (11)

and has a global maximum at i = 0 and local maxima at i = 60, 160, 260, . . .. Population size
was M = 4 for each of three GA implementations. The traditional (T) had a fixed mutation
rate λt = λ and crossover only between members of the current population, traditional
with decreasing mutation rate (TD), retained the same crossover and mutation but the
mutation rate λt = λt decreased geometrically with t, and finally the r-cross (RX) version
had λt = λt and executed crossover only after a prescribed number r of failures to improve,
and then implemented wst-cross between randomly selected members of the current and
original population rather than just ordinary crossover. In each case implementation
involved : (1) roulette wheel selection; (2) crossover selection ; (3) with probability pm(t)
mutate every bit of a randomly selected offspring.

Figure 1: Histogram for ordinary GA, λ = 0.95. Success rate 68%.

Consulting Table 1 one finds that in both cases the algorithm often failed to find the
optimum within the allotted 7K iterations. In Table 2 can be found averages for r-cross for
various r where its superior performance is clear.
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(T) Average (T) success rate λ (TD) Average (TD) success rate
3867.09 0.75 0.99 4057.63 0.43
4426.73 0.68 0.95 6304.24 0.10
4305.24 0.61 0.90 6721.1 0.04
4459.07 0.57 0.80 7000 0.00
3193.65 0.88 0.7 6860.15 0.02

Table 1: Generations till termination of (T) and (TD).

Average r λ Success
generations rate

468.12 2 0.99 1
416.45 5 0.99 1
494.53 10 0.99 1
424.52 20 0.99 1
394.81 2 0.95 1
421.32 5 0.95 1
432.03 10 0.95 1
437.03 20 0.95 1
362.85 2 0.90 1
426.71 5 0.90 1
434.60 10 0.90 1
483.53 20 0.90 0.99
426.82 2 0.80 1
377.08 5 0.80 1
435.99 10 0.80 1
449.86 20 0.80 1
341.32 2 0.70 1
427.58 5 0.70 1
394.11 10 0.70 1
446.76 20 0.70 1

Table 2: Generations till termination of (RX).
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Figure 2: Histogram for r-cross, r = 2, λ = 0.95.

Figure 3: Histogram for r-cross, r = 50, λ = 0.60.

More detail is provided by selected histograms. In Figure 1 one sees data for which a 68%
successs rate was observed for ordinary GA, namely (T), with λt identically 0.95. In Figures
2,3, and 4 can be found plots histograms detailing the performance of (RX) in selected cases.
In table 2 one sees the much smaller average iterations till the goal was found and that the
success rate was virtually 1 for all cases. The histograms show in addition that typically the
number of iterations was far smaller than the average, a typical situation of smaller median
than mean for these more or less exponentially shaped distributions. !

Example 2 below, in which GA is applied to finding the maximum permanent of a matrix,
provides an instance calling upon the material discussed in section 5. In coding the 14 by
14 matrix of 0’s and 1’s as a 196-vector of 0’s and 1’s, in this problem one cannot simply flip
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Figure 4: Histogram for r-cross, r = 5, λ = 0.60.

bits and retain the original problem since the mutation operation must result in a 196-vector
with exactly 40 ones and 156 zeros. And, in the crossover operation, as described above one
could create from two parents i and j an offspring with an incorrect number of one; thus
alterations must be made.

Example 2 Effectiveness of GA with tempered restart is compared with that of ordinary GA
in maximizing a permanent.

The permanent of a square matrix is obtained by taking all signs to be positive in the expan-
sion of its determinant and the authors have previously investigated in [4] the effectiveness
of restarted simulated annealing in finding the maximum. Reported herein are the results
of experiments comparing the performance of an ordinary GA with r-cross GA in finding
the maximum permanent value of a 14 × 14 matrix of zeros and ones containing exactly 40
ones. Ordinary GA, with crossover executed only between randomly selected members of
the current “elite” population, and with a fixed mutation rate was compared with r-cross
for varying values of the parameters r and the mutation rate λt. For ordinary GA the rate
was fixed at λt = Rate while for r-cross the rate was geometrically decreasing satisfying
λt = Ratet. The r-cross had crossovers only when the objective had not shown improvement
over r generations and when it was executed implemented wst-cross; so mating was allowed
between members of the current “elite” population and the original universe of individu-
als. In Tables 3 and 4 can be found the numerical results of running the algorithms on the
permanent problem with a 14 × 14 matrix of zeros and ones and containing exactly 40 ones.

Many alternatives are possible to the mutation operation. The operator of (2) describes
the situation of flipping all bits independently with probability λt, but the one employed in
this example simply selects at random a location in the matrix at which a 1 is located and
selects at random (probability 1/4 each since the matrix is 2-dimensional) from the locations
adjacent to it in the matrix one which contains a zero and interchanges the zero and one. If
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there are none it selects again, and again until the switch is accomplished. At generation t
the mutation is performed on a randomly selected member of the current population with
probability λt. Letting i ∈ {0, 1}196 be an arbitrary matrix with 40 ones and 156 zeros, the
probability ρi,j that i is the result of a mutation from the matrix represented by j clearly
does not depend upon any of the other problem parameters so

µβξ(i) = β
∑

j

ρi,jξ(j) + (1 − β)ξ(i)

and it is seen that (10) is satisfied.

Crossover, requires a new scheme since by the usual one, the offspring of two parents i
and j could have an incorrect number of ones. The algorithm employed in the algorithm of
this example compared locations and swapped 0’s and 1’s in such a way as to preserve the
number of ones, 40 in this case, in the offspring. The important feature is that one of the
crossover operations was the identity so that the requirements of Theorem 3 were met. Thus
the geometric convergence to 0 was assured in the tempered restarted GA in this example.

Average Best Objective Value
Ordinary GA r-cross

Rate r = 5 10 50 100 200
0.99 863.20 1254.40 928.00 1108.80 1000.00 1272.00
0.90 972.80 1161.60 1257.60 1048.00 1281.60 1043.20
0.80 643.60 1062.40 1121.60 932.80 1003.20 1040.00
0.70 685.60 1042.80 1259.20 1098.00 1160.00 1430.40

Table 3: Average over 5 runs for 40K generations, 30 populations.

Maximum Best Objective Value
Ordinary GA r-cross

Rate r = 5 10 50 100 200
0.99 1200 1728 1620 1344 1152 1584
0.90 1152 1440 1728 1296 1944 1152
0.80 792 1344 1200 1056 1120 1512
0.70 768 1296 2016 1452 1728 2016

Table 4: Maximum over the 5 runs.

!

7 Discussion

It has been shown that implementations of genetic algorithms which send the mutation rate
to 0 geometrically fast and execute crossover only after a fixed number of non-improvements
have the property that the probability the goal has not been encountered yet tends to zero
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geometrically if, in a sort of anti-eugenics way, crossover allows matings between members
of the elite and the original population rather than just between members of the elite pop-
ulation. By itself geometric convergence to zero of this tail probability of not having seen
the goal is not a strong recommendation for the method; after all, simply guessing each time
by selecting a random population has the same property. However, if the crossover mecha-
nism is selected carefully and appropriately to fit the problem, great gains in the speed of
identifying the goal can be achieved. The idea of the algorithm is simply that in the initial
stages of a search for the maximum one should allow large probability of moving around
freely; since the selection mechanism will quickly weed out unfit members the algorithm will
proceed to the more promising directions rapidly. However, keeping a fixed mutation rate
will introduce chaff at a constant rate and unduly burden the selection mechanism. Instead,
by sending the mutation rate to zero, promising directions can be examined more thoroughly
without jumping far away by a mutation, as long as the crossover mechanism is tame; it
stays close in terms of function values in the sense that for all (i, j) ∈ S × S and for most
v ∈ {1, . . . , m} one has that |R(F (v)(i, j)) − R(j)| is small. This should not hold for all v
since, having sent the mutation rate to something small, if the region of examination ceases
to offer improvement after a sufficient time, at least one of the randomly selected crossover
F (v) should allow escape from the region. Thus for an adequate (see (8)) collection this can
happen with probability determined by the distribution δ.

For example, in the case of maximizing a continuous function R on an interval [0, 1] with
the members of i ∈ S being the binary expansion coefficients (i1, . . . , iL), it ∈ {0, 1} the
collection

F (v)(i, j) = (j1, j2, . . . , jv, iv+1, . . . , iL) (12)

will, depending on the smoothness of R satisfy the criterion quite well for v ≥ 2 for the
crossover operator in (9) while the crossover G(v)(i, j) = (i1, . . . , iv, jv+1, . . . , jL) would not
satisfy this criterion and the resulting algorithm would be expected to perform poorly. The
choice of r in waiting for improvement should allow an examination of the directions from a
given point in the population assuming the crossover is tame. For the case of the continuous
function R on the line, r should be small, around 2, while for the permanent problem 200
looks more reasonable since the members of S constitute 196-vectors.
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