
Parallel Speed-up of Monte Carlo Methods

for Global Optimization

by

R. Shonkwiler and Erik Van Vleck

Introduction

In this article we will be concerned with the optimization of a scalar-valued function

u = f(x), x ∈ D, defined on some set D. Often D is a subset of n-dimensional Euclidean

space Rn. Further we impose the condition that D be a finite set although we do not

restrict the size of its cardinality. Thus D might be the set of all n-tuples of computer

floating point numbers. In this way our assumption on D is not computationally restrictive.

We make no assumption about the smoothness or even the continuity of f since we use

only the values u of f . In the event that f has at least first order derivatives, much studied

gradient methods efficiently find the optimal local value of f for the basin corresponding

to any given starting value x0. However should f have a large number of local optima,

finding a global optimum is then a matter of chance depending on the x0 selected. And

so it is that when f has no smoothness as well as when f has a very large number of local

optima, one can benefit from an understanding of how to optimize by means of function

values alone.

Two widely known Monte Carlo methods are Simulated Annealing, [8], [9], and Sim-

ulated Evolution (or Genetic Algorithms), [3],[5]. The former is meant to model thermo-

dynamic systems and their ability to achieve near minimal energy configurations through

Boltzmann kinetics as environmental temperature is lowered. The latter is the effort to

find optimal states in an abstract setting in a manner similar to the way biological sys-

tems optimize survival using abstract analogs of the mechanisms of mating, mutation and

enhanced reproduction of the fittest. Because of the generality and importance of these

two methods and because our results apply directly to them, we will briefly describe and

compare them below.

An optimization process proceeds in steps indexed by “time” t = 1, 2, On the tth

step one or more domain points x are selected to constitute the current state Xt of the

process

Xt = {xt
1, . . . , x

t
n(t)} ⊂ D,

and any required function evaluations, ut
i = f(xt

i), are performed. The sequence of random

variables X1, X2, . . . is a stochastic process on the class of all finite subsets of D. Let Dop

1

denote the subset of the domain consisting of the optimal points. If the problem is one of

global minimization, then

Dop = {x∗ ∈ D : f(x∗) ≤ f(x), x ∈ D}.

Some important criteria identified in the literature for a stochastic optimization method

are that: (1) eventually the method should find the global optimum, and (2) moreover the

method should identify it. Mathematically this occurs if the probability that Xt ∩ Dop is

not empty as t → ∞ tends to certainty,

lim
t→∞

Pr(Xt ∩ Dop 6= {}) = 1. (0.1)

in which case the probability is high that the process has found and is in an optimal state

after long run times.

Another important issue for a Monte Carlo method, and one not treated in the litera-

ture that we know of, is the expected running time of the algorithm until an optimal state

is found. Specifically, by the hitting time in Dop we mean the random variable θ equal to

the first time t so that

Xt ∩ Dop 6= {}.

In terms of hitting time, a process will eventually find an optimal state if

Pr(θ < ∞) = 1.

The expected hitting time for an algorithm is given by

E(θ) =

∞
∑

t=1

tPr(θ = t) (0.2)

where Pr(θ = t), t = 1, 2, . . . , is the probability density function for θ. Since

Pr(θ = t) = Pr(θ ≥ t) − Pr(θ ≥ t + 1),

direct substitution above yields the following alternative equations

E(θ) =
∞
∑

t=1

Pr(θ ≥ t) =
∞
∑

t=1

(1 − F (t)) (0.3)

where F (t) = Pr(θ < t) is the cumulative distribution function for θ. This all important

complementary hitting time distribution

{Pr(θ ≥ t)}∞t=1 (0.4)

2

characterizes the optimization process and occupies a central place in this work. Evidently

0 ≤ Pr(θ ≥ t) ≤ 1, t = 1, 2, . . .

and is a monotone decreasing sequence

Pr(θ ≥ t + 1) ≤ Pr(θ ≥ t), t = 1, 2,

We will show that for a large class of Monte Carlo methods (namely memoryless pro-

cesses having stationary transition probabilities, this includes Genetic Algorithms) parallel

implementations of the algorithm reduce the expected hitting time for a problem in pro-

portion to the number of processors (approximately). That is to say this class of methods

experiences approximately linear speed-up when multi-processed. Even more is true, super

linear speed-up is possible. This occurs independently of the number of processors used

and does not require inter-process communication. We will see that Monte Carlo algo-

rithms are typically quite simple and do not use large amounts of memory. Therefore it

is feasible to implement a Monte Carlo method on parallel computers with a large num-

ber of processors, such as the 64K processor Connection Machine, and experience many

thousand fold speed-up over the single process algorithm. This is even the case if the in-

dividual processes must proceed in lock step or inter-process communication is restricted.

Each processor is executing the same code, namely the serial algorithm (of course each

process must be seeded differently).

In some cases a Monte Carlo algorithm will have an infinite expected hitting time.

This occurs when the sum of the complementary hitting time probabilities diverges. But in

this case it is possible for the same algorithm when multi-processed to have finite expected

hitting time.

Finally, we will show that in the worst case (or best case depending on one’s point of

view) when complete information about the past iterations is used, one can still expect a

speed-up of approximately m/2 for m-fold parallelization.

Comparing expected hitting times between a given algorithm and its parallel imple-

mentation is but one example of the usefulness of the complementary hitting time distri-

bution. More importantly this tool can rigorously compare any two different Monte Carlo

methods for a given problem or class of problems and decide the superior.

We will assume the stochastic process constituting the optimization method to be

memoryless, that is for any t = 2, 3, . . . , Xt will depend only on Xt−1 and not on

Xt−2, . . . , X1. Such a process is a Markov chain. This is not a severe assumption in

terms of practice. Understandably, the size of most problems prohibits saving a long his-

tory of trials. On the other hand, using a short history of trials or none at all to generate

the next iteration can fit into the framework of Markov chains by considering Cartesian

3

product chains if necessary. We will not pursue this further. We note however that both

Simulated Annealing and Genetic Algorithms are Markov chain processes.

Since the probabilities governing the selection of the next iterate of a Markov chain

depend only on the present iterate, the process defines and is defined by an N ×N matrix

of transition probabilities P t whose ijth entry is the probability

pt
ij = Pr(Xt+1 = sj | Xt = si)

where sk is the kth possible state of the process k = 1, . . . , N . These transition probabilities

can vary with time t. If they do the chain is termed non-stationary. If they are fixed in

time, it’s a stationary Markov chain.

Throughout this work we shall always assume the Markov chains to be irreducible and

aperiodic. The former means that given any two states s1 and s2 there is a finite sequence

of states si0 , si1 , . . . , sik
such that si0 = s1, sik

= s2 and

pt
ijij+1

> 0, j = 0, . . . , k − 1, t = 1, 2,

The latter means that for any two states s1 and s2, if I is the set of all k (as above)

such that there is some sequence of k transitions transforming s1 to s2, then the greatest

common divisor of I is 1.

A finite irreducible aperiodic Markov chain possesses, for each fixed time t, a unique

invariant distribution πt = (πt
1, . . . , π

t
N),

πt = πtP t, t = 1, 2,

Simulated Annealing as a Non-Stationary Markov Chain

In simulated annealing the states X0, X1, . . . are singleton sets consisting of a single

domain value. The starting state X0 can be randomly selected or can be the result of

a problem based heuristic. Subsequent iterations X1, X2, . . . result from the application

of a “generation” process followed by an “acceptance” process. The generation process

is itself a Markov process and has an associated generation matrix Gt. Given that the

present state at time t is the domain value xi, then the proposed state at time t + 1 is xj

with probability gt
ij . Another way of viewing the generation process is in terms of a unary

stochastic operator µt(·) : D → D.

Once a state xj is proposed from state xi, the acceptance process selects this state to

be the next iterate with probability at
ij,

at
ij = min{1, e−∆u/T }, (0.5)

4

where ∆u = f(xj) − f(xi) and temperature T is a variable of the annealing process.

According to annealing theory, [4],[2], temperature should depend on time t as

T =
C

ℓn(t + 1)
(0.6)

where C is equal to (if available) the depth of the deepest local non-global minimum.

Therefore simulated annealing is a non-stationary Markov chain with transition prob-

ability matrix

P t = Gt∆At (0.7)

where the matrix operation ∆ means

P t
ij =

{

gt
ija

t
ij , if i 6= j

1 −
∑

k 6=i gt
ikat

ik if i = j

In the event that temperature is given according to (0.6) then property (0.1) holds,

[1],[2],[4].

Genetic Algorithms as Stationary Markov Chains

Each state Xi of a genetic algorithm is a finite set of domain values called a population.

As above the starting population X0 can be selected randomly or in some deterministic

way. Subsequent iterates X1, X2, . . . are referred to as generations and arise through the

application of a binary (or mult-ary) stochastic operator νt(·, ·) : D × D → D referred

to as a mating or cross-over, or through the application of a stochastic unary operator

µt(·) : D → D as above known as a mutation in this context. In the literature there is

considerable variety in the details of the application of these operators as well as in the

exact nature of the operators themselves. Whatever the details, the generation cycle is

completed by the application of a removal process resulting in a new population Xi+1

whose size equals that of the population Xi at the start of the generation cycle.

The population Xi+1 at the end of a cycle depends only on the population Xi at the

beginning of the cycle and so such a Genetic Algorithm is a Markov chain. Most GA’s

appearing in the literature employ fixed probabilities over the course of the run and so the

chain is stationary. Calculating the corresponding transition probability matrix depends

greatly on the details of the implementation and is usually impractical.

We will always assume that every Monte Carlo implementation monitors the “best

to the present time” random variable Bt, t = 1, 2, By this we mean the first domain

value occurring among the first t states X0, X1, . . . , Xt for which

f(Bt) ≤ f(x), x ∈
t

⋃

i=0

Xi.

5

Evidently, by irreducibility, for stationary Markov chains one has condition (0.1) for Bt,

lim
t→∞

Pr(Bt ∈ Dop) = 1.

Genetic Algorithms with Cooling

It is easy to imagine from the foregoing descriptions that the two methods may be com-

bined. By allowing the probabilistic mutation and mating processes of a Genetic Algorithm

to vary (possibly) with run time t, it becomes a non-stationary process and encompasses

both Simulated Annealing and classical Genetic Algorithms. (Holland [5,p122] allows the

possibility of varying probabilities in his algorithm, but makes no further mention of it.)

The former is obtained by selecting a null mating operator, the latter by fixing the prob-

abilistic process in time. Equally well the generalized process might be called Simulated

Annealing with (stochastic) binary operators.

This paper is organized as follows. In Section 1 we derive formulas for the expected

hitting time and the complementary hitting time distribution for stationary and non-

stationary finite Markov chains. Also we apply these results to some specific problems. In

Section 2 we derive the hitting time formulas for multi-processed implementations of these

Monte Carlo methods. Our main result is that in the stationary Markov chain case m-

fold multi-processing can result in m-fold speed-up or better in finding exact solutions. In

Section 3 we illustrate the results by working through the annealing and evolution methods

on sample problems. We show by example that in the non-stationary case, m-fold multi-

processing can convert an infinite expectation process into a finite one (thereby achieving

infinite speed-up).

§1.Hitting Time Calculations

1.1. Stationary Markov Chains

Assume that a Monte Carlo method is the simulation of a stationary Markov chain

with transition probability matrix P = (pij) where for any t = 1, 2, . . .

pij = Pr(Xt+1 = Pj | Xt = Pi),

and Pk = {xk1
, . . . , xkn(k)

} ⊂ D, k = i, j, are populations consisting of one or more

domain points. Suppose that it is desired to calculate the expected hitting time to any

one of a given set of g states which we may assume without loss of generality are the

states P1, . . . ,Pg. Let Ek denote the expected hitting time if the process starts in state

Pk, k = g + 1, . . . , N . Then conditioning on the possible transitions from Pk, we have

Ek = (pk1 + pk2 + · · · pkg) + pk,g+1(Eg+1 + 1) + · · · pk,N (EN + 1),

6

or equivalently

−pk,g+1Eg+1 −· · ·+(1−pkk)Ek −· · ·−pkNEN = pk1 + · · ·+pkg +pk,g+1 + · · ·+pk,N = 1.

This equation holds for k = g +1, . . . , N , and therefore the list of conditional expectations

Eg+1, . . . , EN uniquely solves the linear system whose matrix form is

(I − P̂)E = 1 (1.1)

where P̂ is what remains of the transition matrix P with the latter’s first g rows and

columns deleted, E is the N − g dimensional vector of expectations and 1 is the vector all

of whose components are 1. This cannot be a degenerate system because by irreducibility

and the Perron-Frobenius Theorem, the spectral radius of P̂ is strictly less than 1. Hence

1 cannot be an eigenvalue for P̂ .

Let α = (α1, α2, . . . , αN) be the starting distribution, that is the distribution of X0,

αi = Pr(X0 = Pi), i = 1, . . . , N,

and let α̂ = (αg+1, . . . , αN) be the sub-vector of probabilities of starting in the non-

goal states. Since the hitting time is 0 if X0 ∈ {P1, . . . ,Pg} the terms corresponding to

α1, . . . , αg make no contribution to the expectation and so the expected hitting time is

given as

E(θ) = α̂ · E. (1.2)

We see that E(θ) is finite.

Next we show how to calculate the complementary hitting time distribution, Pr(θ ≥

k), k = 1, 2, As above we may assume without loss of generality that the target

states are indexed 1, . . . , g. Let c(k) = (c
(k)
g+1, . . . , c

(k)
N)T , k = 1, 2, . . . , be the conditional

probability vector of hitting times

c
(k)
i = Pr(θ ≥ k | process starts in state i), i = g + 1, . . . , N.

Of course, c(1) = 1 = (1 . . .1)T is the N − g vector of 1’s. As above assume the process

starts according to the distribution vector α = (α1, . . . , αN) and let α̂ be the N − g

starting sub-vector for the non-goal states. By conditioning on the starting state we get

for k = 1, 2, . . .,

Pr(θ ≥ k) = c
(k)
g+1αg+1 + · · ·+ c

(k)
N αN = α̂ · c(k).

But also by conditioning on the transition possibilities, we have

c
(k)
i = c

(k−1)
g+1 pi,g+1 + · · · + c

(k−1)
N pi,N = p̂i· · c

(k−1), k = 2, 3, . . . , i = g + 1, . . . , N,

7

where p̂i· is the N − g vector consisting of the ith row of the transition probability matrix

P with the first g elements deleted. The matrix form of this equation captures all N − g

components at once,

c(k) = P̂c(k−1), k = 2, 3, . . . ,

where P̂ is the matrix whose rows are p̂i·, and therefore P̂ is, as above, the transition

probability matrix P with the latter’s first g rows and first g columns deleted. By trivial

induction

Pr(θ ≥ k) = α̂ · c(k) = α̂ · P̂c(k−1) = · · · = α̂ · P̂ k−1c(1),

that is,

Pr(θ ≥ k) = α̂ · P̂ k−11 , k = 1, 2, (1.3)

We next give a useful numerical method for obtaining the probabilities Pr(θ = k)

and hence also the probabilities Pr(θ ≥ k). It is by calculating the step by step absolute

distributions

αt
i = Pr(Xt = Pi) (1.4)

where

αt = αt−1P ′,

and the transition probability matrix P ′ is the given matrix P modified to make the target

states absorbing. This can be achieved numerically by noting on each step t the values αt
i

for i ∈ { target set}. Their sum will be Pr(θ = t). But before conducting the next step,

these values are set to zero.

Next observe that P̂ is a non-negative matrix whose row sums, ri, i = 1, . . . , N − g,

are bounded by 1; in fact the ith row of P̂ is the (g + i)th row of P with its first g elements

deleted and so

ri =

N−g
∑

j=1

p̂ij =
N

∑

j=g+1

pg+i,j = 1 − (pg+i,1 + · · · pg+i,g) ≤ 1.

Furthermore, since we have assumed the process to be irreducible it must necessarily be

the case that at least one such row sum is strictly less than 1. Consequently by the

Perron-Frobenius theory the spectral radius ρ(P̂) < 1 ([12,p.30]) and P̂ has a non-negative

eigenvalue λ equal to the spectral radius, λ = ρ(P̂).

Let r∗ denote the smallest row sum of P̂ and r∗ the largest,

r∗(r
∗) = min(max){ri}

N−g
i=1 (1.5).

Then by standard Perron-Frobenius theory ([12,p.31])

r∗ < λ < r∗ (1.6)

8

unless all the row sums are equal, r∗ = r∗. In the latter case λ is equal to the common

row sum. It follows that

lim
r∗→1

λ = 1. (1.7)

Let χ be a right eigenvector of P̂ and ωT a left eigenvector corresponding to λ.

P̂χ = λχ, ωT P̂ = λωT .

We may assume ωT is a probability vector,
∑

ωi = 1, and that ωT χ = 1; then ωT and χ

are uniquely determined. The next result may be found in [11,p.9].

Theorem. With notation as above, put

s−1 = α̂ · χ(= α̂ · χωT 1). (1.8)

If λ > |λ2|, where the latter is the magnitude of the next largest eigenvalue after λ, then

there exists an integer 1 ≤ d < N − g, and a fixed polynomial h(k) of degree d − 1 such

that
∣

∣

∣

∣

1

λk
(α̂ · P̂ k1) − s−1

∣

∣

∣

∣

< h(k)

∣

∣

∣

∣

λ2

λ

∣

∣

∣

∣

k

, k = 1, 2, (1.9)

Of course only in unusual cases is it possible to contemplate calculating the factor s.

When its exact calculation is feasible, it is better numerically to use (1.9) directly for it,

s−1 = lim
k→∞

1

λk
α̂ · P̂ k1

which is akin to the power method for eigenvectors and eigenvalues.

1.2 Estimating the factor s

The parameter s is estimated as follows. Since ω has been normalized to be a prob-

ability vector, ωT 1 = 1, therefore s−1 = α̂ · χ. Define the angle φ between ω and χ by

cos φ = ω · χ/‖ω‖ ‖χ‖ and similarly let δ be the angle between α̂ and χ. Then combining

1 = ω · χ and s = 1/α̂ · χ gives

s =
‖ω‖ cosφ

‖α̂‖ cos δ
. (1.10)

This shows that s is the ratio between the projections of the probability vectors ω and α̂

onto χ.

Theorem 1.2.1. If the row sums of P̂ are equal, r∗ = r∗, then s ≥ 1

Proof. Under the hypothesis χ has equal components, say χ = ξ(1, 1, . . . , 1). Then ω ·χ = ξ

and α̂ · χ = ξ
∑N

g+1 αi ≤ ξ. So s ≥ 1.

Theorem 1.2.2. If α̂ has equal components and φ < δ, then s > 1.

9

Proof. Under the hypothesis α̂ is orthogonal to the hyperplane containing the probability

vectors and so has minimum Euclidean norm; hence ‖α̂‖ ≤ ‖ω‖.

Theorem 1.2.3. If P̂ is symmetric and α̂ has equal components then s ≥ 1. If in addition

P̂ has unequal row sums then s > 1.

Proof. Since P̂ is symmetric, ω = χ so that φ = 0. Since α̂ has equal components,

‖α̂‖ ≤ ‖ω‖ and hence s ≥ 1. If also P̂ has unequal row sums, then δ 6= 0, and so s > 1.

Starting a Monte Carlo method from a randomly (uniformly) selected state gives rise

to an α̂ vector with equal components.

We show by example that s can be less than 1. In fact for

P̂ =

(

.3 .1

.8 .2

)

λ = 0.537, χT = (.761, 1.806), and ωT = (.771, .229). Taking α̂T = (.296, .703) gives

s = 0.671. In this example we see that a process in the states corresponding to P̂ will

“deliberately” leave these states, i.e. the second state leads to the first with high probability

while the first leads to the solution with high probability. We associate such a deliberate

path through the P̂ states with s-factor values less than 1.

1.3. Equally Likely Trials

As a special case consider the optimization process in which on each iteration the next

Markov state is selected uniformly at random. Then the transition probability matrix P

has identical elements at every position.

P =

p p · · · p
...

...
...

p p · · · p

where p = 1/N and N is the number of Markov states. If states 1 through g are the target

states then P̂ is the N − g × N − g matrix all of whose elements are p. In this case the

N − g vector 1 is a positive eigenvector of P̂ and the eigenvalue λ is the common row sum

λ = (N − g)p = 1 −
g

N
.

Now suppose the process starts equally likely in a non-goal state, then α̂ =
(

1
N−g · · · 1

N−g

)T

and

Pr(θ ≥ k) = α̂ · P̂ k−11 = α̂ · λk−11 = λk−1. (1.11)

10

So the theorem of section 1.2 is confirmed with h(k) = 0 and s = 1. The expected hitting

time for equally likely trials is

E(θ) =
∞
∑

k=1

λk−1 =
1

1 − λ
. (1.12)

1.4. Non-Stationary Markov Chains

As above we assume the Monte Carlo method corresponds to a Markov chain Xt,

t = 1, 2, . . . , but now we allow the transition probabilities pij(t) to depend on the iteration

index t. In this case the expected hitting time is given by an infinite series. As above

assume the target states are indexed 1, . . . , g, and let Et
i denote the expected incremental

hitting time to one of P1, . . .Pg, starting from state Pi at time t, that is Et
i is the expected

increment in the hitting time beyond t. As before, conditioning on the possible transitions

from state i, i = g + 1, . . . , N , at time t,

Et
i = pi1(t) + . . . + pig(t) + pig+1(t)(E

t+1
g+1 + 1) + · · · + piN (t)(Et+1

N + 1)

= pi1(t) + · · ·+ piN (t) + pig+1(t)E
t+1
g+1 + · · · + piN (t)Et+1

N

= 1 + p̂i·(t) · E
t+1

where p̂i·(t) is the deleted ith row vector of the time t transition matrix P t, i = g+1, . . . , N ,

and Et+1 is the expectation vector. In matrix notation

Et = 1 + P̂ tEt+1, t = 1, 2, . . . ,

where 1 is the N − g vector of 1’s and P̂ t is the matrix gotten from P t by deleting the

latter’s first g rows and columns. The solution E = E1 is given by induction on the

equation above,

E = 1 +

∞
∑

t=1

t
∏

j=1

P̂ j1 (1.13)

where
∏t

j=1 P̂ j = P̂ 1P̂ 2 · · · P̂ t. Note that this is a series of non-negative terms and so is

either finite or the expected hitting times are infinite.

Just as in the stationary case, the hitting time distributions Pr(θ ≥ k) may be obtained

numerically by modifying the transition matrix so that the target states are absorbing.

1.5. Sampling Without Replacement

We include for reference the hitting time calculation for a method which is not equiv-

alent to a Markov chain in that each new trial uses the complete history of previous trials.

In particular each previously tried point is remembered and not tried again. We include

11

this example because we will see that even with such complete information parallel Monte

Carlo methods can nonetheless be substantially sped-up (cf. Section 2.5).

Suppose the Monte Carlo method is arranged so that the probability of finding an

optimal state on the tth iteration is hyperbolically increasing, p
1−(t−1)p for p = 1/N , N =

card(D), and 1 ≤ t ≤ N . This would arise if visited states are systematically eliminated

from further consideration. Then it is easy to see that

Pr(θ = t) = p, 1 ≤ t ≤ N. (1.14)

In this case the expected hitting time is finite

Pr(θ ≥ t) =

{

0, t > N ,
kp, 1 ≤ t = N + 1 − k ≤ N
Np, t ≤ 1,

(1.15)

and so from (0.2)

E(θ) =
N(N + 1)

2
p =

N + 1

2
. (1.16)

§2. Parallel Monte Carlo Methods

We next examine the behavior of Monte Carlo optimization algorithms when multiple

copies are run in parallel. We assume that m identical processes are run simultaneously

and independently of each other except that any one process can flag them all to stop. The

variable t now counts “wall clock time,” i.e., the same individual time for each process,

not their cumulative time.

This multiprocess can be viewed as an m-tuple Xt = (X1
t , . . . , Xm

t) of the m-individual

processes defined on their m-fold product probability space. This holds for both the

stationary and non-stationary chains. By the multi-process hitting time Θ we mean the

random variable equal to the first time t that any one of the m-individual processes is in

Dop,

Xk
t ∩ Dop 6= {}, for some 1 ≤ k ≤ m

and

X i
τ ∩ Dop = {}, 1 ≤ i ≤ m, τ < t.

Or equivalently

Θ = min
1≤i≤m

{θi},

where θi is the hitting time of the ith process X i
t , i = 1, . . . , m. We use the notation E or

E1 for E(θ) and Em for E(Θ) when the number of processes is m.

12

2.1. Multiprocess Expectation and Hitting Time Distribution Calculation

We describe here how multi-process expectations can be calculated using the formulas

developed in Section 1. Since the multi-process is a Markov process Xt = (X1
t , . . . , Xm

t)

which is the Cartesian product of m identical, independent Markov processes Xt, we

may take as a state of the multi-process, the Cartesian product of single-process states.

The cardinality of the product space is Nm and the multi-process transition matrix P is

correspondingly large. Its elements are

pi1,...,im

j1,...,jm
= Pr(Xt+1 = (xj1 , . . . , xjm

) | Xt = (xi1 , . . . , xim
))

= Pr(X1
t+1 = xj1 | X1

t = xi1) · · ·Pr(Xm
t+1 = xjm

| Xm
t = xim

)

= pi1j1 · · · pimjm
.

Now the multi-process expectations and hitting time distributions can be calculated as

before using instead this Cartesian product transition matrix. Unfortunately the resulting

matrix products quickly become unwieldy. In fact except in special cases P already is.

However we show next that there is a much easier way to calculate the complementary

hitting time distribution owing to the fact that the processes are identical and independent.

2.2. The Multi-process Complementary Hitting Time Distribution

It is evident that the event Θ ≥ t is equivalent to the event

θ1 ≥ t and θ2 ≥ t and · · ·and θm ≥ t.

Therefore by independence we have the following.

Proposition. For m identical, independent processes

Pr(Θ ≥ t) = (Pr(θ ≥ t))m, t = 1, 2, . . . (2.1)

and so

Em = E(Θ) =
∞
∑

t=1

(Pr(θ ≥ t))m. (2.2)

We next calculate the expectation of Θ for the hitting time probability distributions

of the previous section. From these calculations we will see that the parallel speed-up

prospects of Monte Carlo algorithms are excellent. By speed-up we mean

Speed-Up =
E(θ)

E(Θ)
. (2.3)

Main Theorem. Let X = (X1
t , . . . , Xm

t) be an m-fold multi-process of m identical

independent stationary Markov chains X i
t , t = 1, 2, . . . , i = 1, . . . , m. If λ is the principle

13

eigenvalue of the reduced transition probability matrix P̂ and P̂ is irreducible (see Section

1.1), then

Speed-up = sm−1 1 − λm

1 − λ
+ O(1 − λm)

−→ msm−1 as λ → 1.

(2.4)

Proof. By the results of Section 1 we known that

(s−1 − h(k − 1)δk−1)λk−1 ≤ Pr(θ ≥ k) ≤ (s−1 + h(k − 1)δk−1)λk−1

for h(·) a fixed polynomial and δ = |λ2|
λ < 1. Therefore

(s−1 − h(k − 1)δk−1)m(λm)k−1 ≤ Pr(Θ ≥ k) ≤ (s−1 + h(k − 1)δk−1)m(λm)k−1.

By the Root Test the series
∑

h(k − 1)δk−1λk−1 converges for all 0 ≤ λ ≤ 1, say to S(λ).

Further as λ → 1, S(λ) → S(1) and S(1) is finite. Therefore

s−1

1 − λ
− S(λ) ≤ E(θ) ≤

s−1

1 − λ
+ S(λ), 0 ≤ λ < 1. (2.5)

Also the series

∞
∑

k=1

(s−1 ± h(k − 1)δk−1)m(λm)k−1 =

∞
∑

k=1

m
∑

j=0

(

m

j

)

sj−m(±h(k − 1))j(δj)k−1(λm)k−1

=
m

∑

j=0

(

m

j

)

sj−m
∞
∑

k=1

(±h(k − 1))j(δj)k−1(λm)k−1

converges because for each j = 0, . . . , m the series

S
(j)
± (λ) =

∞
∑

k=1

(±h(k − 1))j(δj)k−1(λm)k−1

does. For j 6= 0, S
(j)
± (λ) is finite for all 0 ≤ λ ≤ 1, but for j = 0

s−mS(0)(λ) = s−m
∞
∑

k=1

(λm)k−1 =
s−m

1 − λm
→ ∞ as λ → 1.

Letting b±λ denote the sum

b±λ =
m

∑

j=1

sj−m

(

m

j

)

S
(j)
± (λ),

14

then by combining inequalities above we get

s−1

1−λ − S(λ)
s−m

1−λm + b+
λ

≤
E(θ)

E(Θ)
≤

s−1

1−λ + S(λ)
s−m

1−λm − b−λ
. (2.6)

The third member of this chain of inequalities can be rewritten as

s−1

1−λ (1 − λm)

s−m − (1 − λm)b−λ
+

S(λ)(1 − λm)

s−m − (1 − λm)b−λ
.

Evidently the second term tends to 0 with 1 − λm. The difference between the first term

and the quantity sm

s

(

1−λm

1−λ

)

divided by 1 − λm is

s−1 (1 − λm)

1 − λ

s−m −
(

s−m − (1 − λm) b−λ
)

(1 − λm) s−m
(

s−m − (1 − λm) b−λ
)

=
sm

s

(

1 − λm

1 − λ

)

b−λ
s−m − (1 − λm) b−λ

−→ constant

as λ and hence also λm tend to 1. Evidently the first member of (2.6) behaves in like

manner and so the estimate (2.4) is proved.

Definition. On the basis of this result, we define the speed-up of a Monte Carlo method

to be linear when s = 1, superlinear when s > 1, and sublinear if s < 1.

Figure 2.1 depicts the function sm−1(1−λm

1−λ) as a function of m for fixed λ, λ = .99, and 3

different values of s, s = 1.02 > 1, s = 1, and s = .98 < 1.

15

50 100 150 200

25

50

75

100

125

150

175

200

SpeedUp

Processors

figure 2.1

As a function of m
1 − λm

1 − λ
−→

1

1 − λ
, m → ∞

so that its contribution to speed-up chokes off for large m. By contrast the term due to s is

exponentially increasing with m when s > 1 so that the actual speed-up can be superlinear.

Remark 1. From eqn.(1.7) λ is near 1 when the smallest row sum r∗ of P̂ is near 1.

Remark 2. Of course Em can never be less than 1 so that actual speed-up can never

exceed E1; the term O(1 − λm) does not go away with increasing m.

2.3. Equally Likely Trials Revisited

From before, eqn.(1.11), the hitting time distribution for the single process is

Pr(θ ≥ t) = λt−1,

so that s = 1 and h(·) = 0. Therefore the exact speed-up for equally likely trials is

1 − λm

1 − λ
−→

{

m, λ → 1,
1

1−λ
, m → ∞.

16

2.4. Linear Speed-up as a Worst Case

The importance of the result of section (2.3) lies in the fact that since the (stationary)

Monte Carlo method which samples the domain space by selecting iterates uniformly at

random over the entire space has s = 1, any other method found to be “worse” than this,

s < 1, can simply be abondoned and replaced by equally likely trials. Of course linear

speed-up in that case will be relative to the equally likely trials performance of the single

process (not the performance of the original method as a single process). But it is even

possible to insure that s > 1. From Theorem 1.2.3 we only have to make P̂ symmetric

with at least one state having a better chance of finding the goal (in one step) than the

others and start the process with equal likelihood among all the states.

We will see in the next section (by example) that methods which take advantage of

special infomation as a single process will not experience full linear speed-up as a multi-

process, it could experience only half linear speed-up.

2.5. Sampling Without Replacement

Here the single process hitting time distribution is Pr(θ = t) = p, 1 ≤ t ≤ N , according

to equation (1.14) and the complementary hitting time distribution is given by equation

(1.15). Therefore the multi-process hitting time distribution is

Pr(Θ ≥ t) =

0, t ≥ N ,
(kp)m, 1 ≤ t = N + 1 − k ≤ N ,
(Np)m, t ≤ 1.

where N = 1/p. The expected multi-process hitting time is

E(Θ) = (Np)m + (N − 1)mpm + · · · + 2mpm + pm = pm
N

∑

k=1

km.

But the sum in the latter member is known to be a polynomial r(N) in N of degree m+1

and leading coefficient equal to 1/(m + 1). Therefore the speed-up is

1
2 (N + 1)

1
m+1

pm(Nm+1 + q(N))
=

m + 1

2

1 + 1
N

1 + 1
Nm+1 q(N)

where q(N) is a polynomial of degree m. Therefore as N → ∞,

Speed-up →
m + 1

2
.

The speed-up is only about half linear here because by eliminating previously unsuccessful

tries, the search algorithm is utilizing more and more information as it proceeds. Yet the

17

independent multiple processes gain no advantage from their mutual information during a

run since they do not communicate and hence do not share it.

§3. Computational Results on Some Specific Problems

In this section we apply the foregoing considerations to two illustrative problems. The

password problem is characterized by its completely neutral, totally flat objective function.

It serves as a reminder why it is that general results about Monte Carlo methods are hard

to come by. The Sandia Mountain problem is characterized by its relatively large basin for

the suboptimal minima compared with the small basin for the true global minimum. Such

a circumstance is deceptive for both the annealing and evolutionary methods.

3.1. Password Problem

Assume that a J character password chosen from an alphabet of M symbols is to be

found. Trying a proposed solution results in either failure or success, there are no hints.

The domain D consists of all strings of J legal symbols, card(D) = MJ , and for x ∈ D

the objective function will be taken as

f(x) =

{

1, if x is correct
0, if x is incorrect.

In reality, except for the extreme nature of its objective function, the password problem

is typical of very many problems encountered in practice. Indeed, any problem u =

f(x1, . . . , xn) defined on a rectangle

ai ≤ xi ≤ bi, i = 1, . . . , n

in n-dimensional Euclidean space Rn has this form computationally. For if the binary

floating point representations of each component consisting of md mantissa digits, ed

exponent digits, and one sign digit

xi = sibi
1b

i
2 . . . bi

mde
i
1 . . . ei

ed

are concatenated, there results a password problem with J = n(md + ed + 1) characters

from the alphabet {0, 1} of size M = 2. In this way such a problem with a general objective

function becomes a password problem with hints.

There exist preprogrammed Genetic Algorithm solvers for this type of problem such

as GAP and GAPR, cf. [10]. The user simply adds his particular alphabet, string length

and objective calculation and brings up GAP with the file name containing these additions.

Returning to the problem at hand, we attempt its calculation by an annealer. Our

unary operator will be to modify the present (failed attempt) x by selecting a character

18

position at random from 1, 2, . . . , J and replacing the letter of x at that position by a

randomly chosen letter from the alphabet, one character uniform replacement. Evidently

the nature of the objective function obviates the need for a temperature here (all ∆u’s for

states of P̂ are 0). There results a transition probability matrix whose row for x, unless x

is the solution, has a zero in every column corresponding to a y ∈ D differing from x in

two or more positions. The probability for those y ∈ D differing in exactly one position

from x is 1/(JM), and the probability that x itself is reselected is 1/M .

Note that P is symmetric. Further P̂ (equal to P with the goal row and column

removed) is also symmetric and has unequal row sums. The latter follows since some

states of P̂ lead to the goal while others do not. Therefore Theorem 1.2.3 applies for a

uniformly selected starting state and we can get superlinear speed-up for this problem.

With the choices J = 4, and M = 5 the matrix P is 625× 625 and P̂ is 624× 624 and

it is possible to calculate all the relevant optimization characteristics exactly. Assuming

a uniformly selected starting state, in Table 1 we show the principle eigenvalue λ, the

s-factor s, the exact expected hitting time E, and the exact expected hitting times E2, E4,

E8 for 2, 4, and 8 multiprocesses implementations. In fig. 3.1 we show the complementary

hitting time distribution {Pr(θ ≥ k} and its powers. These calculations are performed

as follows. Using the power method for eigenvalues in conjunction with equations (1.3)

and (1.9) gives λ, s, and {Pr(θ ≥ k}. From (1.1) E is obtained. The expectations E2,

E4, and E8 are calculated from (2.2). Further in Table 1 we give the averaged empirical

expectations Ê2, Ê4, Ê8 of 100 annealing runs (simulations of the Markov Chain) and the

corresponding empirical speed-up’s. By “time” in the annealing runs we mean the number

of iterations taken by the solver process. Of course we (artifically) exclude the possibility

of starting in the goal state (cf. section 1.1).

Table 1

Password Problem without hints

λ = .998830 s = 1.000255 -

E = 854.7 Ê = 870.2 -

E2 = 427.5 Ê2 = 424.2 SU2 = 1.99

E4 = 213.9 Ê4 = 235.7 SU4 = 3.99

E8 = 107.1 Ê8 = 125.9 SU8 = 7.98

19

figure 3.1

3.2 Genetic Algorithm Solver for the Sandia Mountain Problem

Let the domain D be the set of integers D = {0, 1, ..., N}, card(D) = N + 1, and let

the objective function be

f(x) =

{

N−x
N−1 , x = 1, 2, . . . , N
−1, x = 0,

i.e. a long gradual uphill slope from x = N to x = 1, but then a steep drop at x = 0, see

fig. 3.2.

1 2 3 4 5 6 7

-1

-0.5

0.5

1

x

figure 3.2

The global minimum of −1 occurs at x = 0 and this minimum has a basin of two

domain points. There is also a local minimum of 0 occurring at x = N . This basin is of

20

size N . To keep the example within reasonable size let N = 7 and represent the N +1 = 8

domain values in binary

0 ↔ (000)2, 1 ↔ (001)2, . . . , 7 ↔ (111)2.

We employ a standard Genetic Algorithm (cf. [3]) with a population size of 2, reproductive

success taken in proportion to fitness φ which will be defined as

φ(x) = 2 − f(x), x ∈ D,

crossover based on bit strings and a bit mutation rate of pm = 0.001. The number of

distinct populations is 8·9
2

= 36.

An iteration of the algorithm will consist of: (1) a reproduction of the present pop-

ulation, each “individual” in proportion to its fitness; let PR be the 36 × 36 transition

probability matrix for this process. Next (2) a crossover or mating process based on bit

strings. Note that the mate selection matrix is just the identity because the population

size is 2. For this 3 bit example the two crossover sites, between bits 1 and 2 or between

bits 2 and 3, are chosen equally likely. Let Pc denote the 36 × 36 matrix for this process.

Then (3) a mutation in which one of the two population members is chosen equally likely

and each bit of the chosen member is reversed (0 → 1 and 1 → 0) with probability pm

independently; Pm denotes the resulting 36×36 transition matrix. Finally (4) the required

function evaluations are performed to obtain the next generation’s fitness and to update

the ”best” random variable Bt.

These processes may be elaborated as follows. During the reproduction process the

population < i, j > will become one of the populations < i, i > or < i, j >, or < j, j > . If

φi ≡ φ(i) is the fitness of i ∈ D, then the probability of obtaining < i, i > is
(

φi

φi+φj

)2
, of

< i, j > is 2
(φiφj

φi+φj

)

and of < j, j > is
(φj

φi+φj

)2
. During crossover the population < i, j >

with corresponding bit strings i = b1b2b3 and j = B1B2B3 will become

b1B2B3 and B1b2b3 with probability
1

2

or

b1b2B3 and B1B2b3 with probability
1

2
.

Finally, under mutation, the population < i = (b1b2b3)2, j = (B1B2B3)2 > will become,

with prime denoting bit complementation,

b1b2b3 and B1B2B3 with probability (1 − pm)3

or

b1b2b
′
3 and B1B2B3 with probability

1

2
(1 − pm)2pm

21

and so on until

b1b2b3 and B′
1B

′
2B

′
3 with probability

1

2
p3

m.

The 36× 36 overall transition probability matrix P is the product of its three compo-

nent parts reproduction, crossover and mutation by the independence of these processes,

and works out to be

P = PRPcPm =

.729 .081000

.425 .324000
...

...
...

.000 .000729

.

Note that each of the 8 populations < 0, 0 >, . . . , < 0, 7 > containing 0 solve the

problem. Therefore the deleted transition matrix P̂ is 28 × 28 and omits the first 8 rows

and columns of P .

As in the first example we may calculate the optimization characteristics from the

transition probability matrix. These data are shown in Table 2 and fig. 3.3.

Remark. This example affords a simple explanation as to why superlinear speed-up is

possible. There is a certain (relatively large) probability p that the process will be in the

sub-optimal state x = 7. (Here p = .185 and is the last component of the normalized left

eigenvector ω for P̂ .) By contrast the probability q that the process will be in state x = 1,

the threshold of the basin for the solution, is small (q = .029, the first component of ω).

However for m independent processes, the probability they all will be in state x = 7 is pm

– small for large m, while the probability thatat least one of the m processes is in state

x = 1 increases with m, 1 − (1 − q)m. But it only takes one process to find the solution.

Table 2

Sandia Mountain Problem

λ = .975624 s = 1.1488966 -

E = 36.23 Ê = 37.76 -

E2 = 16.58 Ê2 = 16.61 SU2 = 2.19

E4 = 7.30 Ê4 = 7.10 SU4 = 4.96

E8 = 3.22 Ê8 = 3.20 SU8 = 11.25

22

figure 3.3

3.3. Simulated Annealing Solver for the Sandia Moutain Problem N = 2 Our interest is

in showing that the expected hitting time can be infinite when attempted by an annealer.

For this purpose we consider the Sandia Mountain problem with N = 2 and use a standard

simulated annealing algorithm, [9]. We will take the generation matrix to be the 3 × 3

symmetric matrix

G =

1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

 .

Letting ∆ = 1
N−1

= 1, the acceptance matrix is

A =

− e−2∆/T −
1 − 1
− e−∆/T −

 .

The transition probability matrix is given by

pij =

{

gijaij if i 6= j
1 −

∑

k 6=i pik if i = j

thus

P =

1 − 1
2e−2∆/T 1

2e−2∆/T 0
1/2 0 1/2
0 1

2
e−∆/T 1 − 1

2
e−∆/T

 .

From annealing theory (cf. Introduction) the temperature T should vary with iteration

count t according to the equation

T =
C

ℓn(t + 1)

23

where C is the depth of the deepest local non-global minimum. Here C = 1. Eliminating

T gives the transition probabilities directly in terms of t, thus

p21(t) =
1

2
e−∆ℓn(t+1) =

1/2

(t + 1)∆
=

1/2

t + 1
, t = 1, 2, . . . ,

and

p22(t) = 1 − p21(t) = 1 −
1/2

t + 1
, t = 1, 2,

To analyze this process we use equation (1.13) to calculate the expected hitting time.

In general the iterates
t

∏

j=1

P̂ j

quickly become intractable. Indeed the various terms of this product contain all the pos-

sible ways leading to state x = 0 in t iterations starting from a given state. Here however

we estimate these probabilities. Hitting the goal at time k includes the possibility of re-

maining for t = 1, 2, . . . , k − 2 in state x = 2, then moving in two consecutive iterations to

states x = 1 and x = 0. Therefore, the probability of hitting at time k is at least as large

as

hk =
(

1 −
1/2

2

)(

1 −
1/2

3

)

· · ·
(

1 −
1/2

k − 1

)1

2

1

k

1

2

>
(

1 −
1

2

)(

1 −
1

3

)

· · ·
(

1 −
1

k − 1

)1

k

1

4

=
1

4k(k − 1)
, k = 2, 3,

It follows that the expected hitting time from state 2 is at least as large as

∞
∑

k=2

khk =
1

4

∞
∑

k=2

1

k − 1
= ∞.

3.4. Example

Finally, we show by example that an annealer with infinite expectation can be con-

verted to finite expectation when run in parallel. Consider the Sandia Mountain problem

with N = 1 and the transition probability from state x = 1 to the goal x = 0 given by

p10(t) =
1

t + 1
, p11(t) = 1 − p10(t), t = 1, 2,

Then the event that the hitting time will be k occurs if and only if the process remains in

state 1 for the first k − 1 trials and moves to state 0 on the kth; this has probability

(1 −
1

2
)(1 −

1

3
) · · · (1 −

1

k
)

1

k + 1
=

1

k(k + 1)
, k = 2, 3,

24

and for k = 1, Pr(θ = 1) = 1/2. Therefore

Pr(θ ≥ t) =

∞
∑

k=t

1

k(k + 1)
=

1

t
, t = 1, 2,

Then the single process expectation is infinite while the m multi-process expectation is

Em =
∞
∑

t=1

1

tm
< ∞, m = 2, 3,

Conclusions

We have shown that superlinear speed-up is possible with these types of algorithms. A

given Monte Carlo method is characterized by its deleted transition probability matrix P̂

and in particular its hitting time expectation depends on the complementary hitting time

distribution. Two parameters, the principle eigenvalue λ of P̂ , and the s-factor, completely

describe the tail of the hitting time distribution; asymptotically

Pr(θ ≥ k) ≈ s−1λk−1.

The complementary hitting time distribution can be used to rigorously compare two Monte

Carlo methods.

Hardware and software considerations for implementing multi-processed Monte Carlo

algorithms are its strong point. In software hardly more than a fork call need be added.

As to hardware, virtually any parallel architecture will do – shared memory, distributed

memory, massively parallel, e.t.c..

Finally one intriguing consequence of a superlinear parallel algorithm is the possibility

of a new single process algorithm. In this case it is the running of multiple processes on

a single processor machine. Conceivably it is possible this technique will yield a faster

converging uni-processor algorithm, but only in the most unusual circumstances. Unfor-

tunately running the large number of processes required will in most cases entail so much

overhead so as to nullify the gains stemming from the multi-processing.

References

[1] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and Bayesian

restoration of images”, IEEE Trans, PAMI (1984).

[2] B. Gidas, “Nonstationary Markov chains and convergence of the annealing algorithm”,

J. Stat. Phy., 39(1985), 73-131.

[3] D. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning”,

Addison-Wesley, Reading, Mass. (1989).

25

[4] B. Hajek, “Cooling schedules for optimal annealing”, Math of Operations Research,

13 (Feb. 1988)

[5] J. Holland, “Adaptation in Natural and Artificial Systems”, Univ. of Michigan Press,

Ann Arbor, MI (1975).

[6] D. Isaacson and R. Madsen, “Markov Chains Theory and Applications”, Krieger Pub.

Co., Malabar, FL (1976).

[7] J. Kemeny, L. Snell, “Finite Markov Chains”, van Nostrand Co., Princeton, NJ (1960).

[8] S. Kirkpatrick, C. Gelatt, M. Vecchi, “Optimization by simulated annealing”, Science

220 (1983), 671-680.

[9] P. van Laarhoven, E. Aarts, “Simulated Annealing: Theory and Applications”, D.

Reidel, Boston (1987).

[10] M. Nailor, “GAP and GAPR Genetic Algorithm Prototyper”, School of Math.

preprint Ga. Inst. of Tech., Atlanta Ga. 30332 (1989)

[11] E. Seneta, “Non-negative Matrices and Markov Chains”,Springer-Verlag, New York

(1981).

[12] Varga, “Matrix Iterative Analysis”, Prentice-Hall, Englewood Cliffs, NJ (1963).

AMS Subject Classification: Primary Secondary

Parallel Speed-Up of Monte Carlo Methods for Global Optimization

by

R. Shonkwiler and Erik Van Vleck

Math: 112989-056

26

