An Analysis of some Stochastic Optimization Methods

by

Neil J. Calkin, R. Shonkwiler and M. C. Spruill
Georgia Institute of Technology
Atlanta, GA 30332
shonkwiler@math.gatech.edu, www.math.gatech.edu/ shenk

Given a real-valued function C', the objective, defined on a set of points, the problem
is to find the optimal function value, maximum or minimum, along with a point where
it occurs. These are the optimum and optimizer respectively. Just to be definite, assume
here the objective is such that we want to minimize it, as for example a cost function.
The points are often points in the usual sense such as n-tuples in some Cartesian product
space; but they can also be abstract as for example the tours in a Traveling Salesman
problem. Collectively we refer to them as the domain or solution space and we denote
their number by N. In this work we will be interested in estimating how long it takes to
find an optimizer. Since our algorithms are stochastic, we take this to be the expected
running time E of the solution method.

Generally, optimization methods are iterative and successively approximate the mini-
mum cost although progress is not always monotonic. The various solution methods differ
in the way iterations are conducted. Those methods for which each new approximation
depends only on the present one in the iteration loop, can be analyzed as a Markov Chain.
Most methods are of this type, including, for example, Genetic Algorithms.

Graph Theoretical Formulation

Search methods can also be modeled graph theoretically. We may take the points of (a
finite) solution space to be the vertices of a graph. Every search process has associated
with it, either explicitly or implicitly, a neighborhood system. The neighborhood of a point
is the set of all other points to which the process can move in one iteration. The edges of
the graph join a vertex to its neighbors.

Retention and Acceleration

As mentioned above, when the successive solutions depend only on the previous solu-
tion, the process is a (homogeneous) Markov Chain and is described by a transition matriz

P

Y

P = (pij).

In this, p;; is the probability of a transition from solution : to solution 7 on any given
iteration. Let ay, the state vector, denote the probability distribution over the solution
space for the whereabouts of the algorithm on iteration ¢ and let ag denote the same for
the starting solution. Thus if the starting solution is chosen equally likely, ag will be the
row vector all of whose components are 1/N. The successive states of the algorithm are
given by the matrix product

o = o1 P

and hence
ay = agPl.

It is well-known that the expected hitting time E can be calculated as follows. Let P
denote the matrix which results from P when the rows and columns corresponding to the
optimizers are deleted and &y the vector that remains after deleting the same columns of
a¢. Then the expected hitting time is given by

~

E =éo(I —P)™"1 (1)

where 1 is the column vector of 1’s.
Equation (1) may be re-written as the Neumann series

E=60(I+P+P*+P%+.)1
By the Perron-Frobenius theorem,
PF o \eyw as k — o0

where y is the right and w the left eigenvectors for the principle eigenvalue A of P. The
eigenvectors may be normalized so that w1l = 1 and wy = 1. With these substitutions the
equation for £ becomes

Ex—(1+A+A+...)

1

1—A

where 1/s = dpx. We therefore arrive at the result that two scalar parameters govern the
convergence of the process, retention A and acceleration s. In most applications A is just
slightly less than 1 and s is just slightly more than 1. See reference [2].

%

1
S
1
S

Theorem 1. The convergence rate of a homogeneous Markov Chain is geometric, 1.e.

1
Pr(an optimizer is not found by kth iteration) < —*,
s

and the expected number of iterations needed to find an optimizer is approximately given
by

Note that this result continues to hold for any collection of points in place of the set
of optimizers. Thus one might define a goal to be any point x for which C(x) < ¢ for some
target cost ¢. The theorem holds for the these points z.

In some cases it is possible to estimate retention and acceleration. One way is from
an empirical graph of the complementary hitting distribution chd(-) defined by

chd(t) = Pr(hitting time > ¢), ¢t=0,1,...

~ _/\t—l
S

Plotting log(chd) vs t — 1 gives, asymptotically, a straight line whose slope is A and whose
intercept is —log s. While this technique is adequate for retention, there is a better way
to estimate acceleration, and that is by parallel execution speedup.

ITP parallel search

Now consider running m copies of a given algorithm in parallel, independently of each
other; we call this independent identical processes parallel execution. By independence,
their expected hitting time E(m) is given by

E(m) = (I — P™)™ 1

= do(I +P™ 4+ (P™)? 4 (P™)® 4+ .. 1.
1 1

sm] —) \m’

%

If we define speedup SU(m) to be relative to the single-processor running time, we

find

E(1 me1l— A"
SU(m):—((m)) =3 171_/\
~ s Im

for A near 1. These results show that IIP parallel is an effective technique when s > 1
accelerating convergence superlinearly. See reference [2].

Iterative Improvement/Tabu Search

An sterative improvement algorithm is one in which the successive approximations are
monotically decreasing. It is a deterministic process, if run twice starting from the same
initial point, the same sequence of steps will occur. Eventually the alogrithm reachs a local
minimum relative to its neighborhood system and no additional improvement is possible.
When this occurs the algorithm must stop.

By its nature, an iterative improvement algorithm partitions the solution space into
basins. A basin being all those points leading to the same local minimum. Graph theoret-
ically, an iterative improvement alogrithm is a forest of trees. Each tree corresponds to a
basin, the root of the tree is the local minimum of the basin.

For problems having a differentiable objective function, the gradient is generally used
to compute downhill steps required for improvement. In discrete problems, one has a
“candidate neighborhood system,” that is, each point has a neighborhood of candidates.
Candidates are examined until one is found which improves the objective value and that
one becomes the next iteration point. Various heuristics are used for assigning a candidate
neighborhood. For example, when the domain is a cartesian space of some sort, neighbors
can be the one-coordinate perturbations of the present point.

Tabu search is a modification of iterative improvement to deal with the problem
of premature fixation in local minima. A short history of visited points is retained by
the algorithm. When no improvement is possible among the candidate neighbors, then
backtracking is allowed. Thus Tabu Search is not a Markov Chain process.

Iterative Improvement with Random Restart

Another method for dealing with premature fixation is restart. We envision a process
combining a deterministic downhill operator g, acting on points of the solution space,
and a uniform random selection operator U. The process starts with an invocation of U
resulting in a randomly selected starting point. This is followed by repeated invocations of
g until a local minimum is reached. Then the process is restarted with another invocation
of U and so on.

As above, this process enforces a topology on the domain which is a forest of trees.
The domain is partitioned into basins B;, 1 = 0,1,... as determined by the equivalence
relation * = y if and only if g¥(x) = ¢’(y) for some k,j. The settling point or local
minimum b of basin B is limy_ o ¢¥(x) where x is any point of B. By the depth of a tree
we mean its maximum path length.

The transition matrix for such a process assumes the following form

By, 0 ... 0
Q B ... Q
P=1. . .
Q Q ... B,
By overload of notation, we also use B; to denote the matrix corresponding to basin B;.
Each sub-matrix B; is of the form

p P P P
1 0 0 0
B,=|0 1 0 0],
00 ... 1 0

the 1’s are in the lower triangle but not necessarily on the sub-diagonal. The blocks
designated by () are generic for the form

0 0 ... O
Q=1. . . .
0 0 ... O

Let E denote the expected hitting time to the basin By containing a minimizer, the
goal basin, and let G denote the same thing for the set of global optima themselves, Let T;
be the expected time to reach the settling point of basin B;. Let |B;| denote the number
of points in basin B; and 6; the ratio |B;|/N where N = > |B;|, i.e. 6; is the probability

of landing in basin B; on a restart. Then by decomposition of events
G=(1+4+T)+(1+T1+Gb +...+(1+T, +G)b,

or
1 k13
G=—11+ T:0; | .

4

And
E=6+(14+T1+E)6+...+(14+T,+ E)b, (2)

or

1 k13
E:% <1+2Ti9i>. (3)

=1

As above FE is also asymptotically given by

Because of the special structure of P in this case, both retention and acceleration can be
calculated directly.

Solving for A and s, the Fundamental Polynomual

In the forest of trees model, it is clear that all states which are a given number of steps
from a settling point are equivalent as far as the algorithm is concerned. For example,
equation (3) may be rederived. Let r;(¢) be the number of vertices j steps from the local
minimizer of basin i and let r; = . (i) denote the total number of vertices which are
7 steps from a local minimizer. In particular, rg = n is the number of local minimizers.

Now T;, the expected time to reach the local minimizer of basin ¢ given that basin @
has been chosen for restart, can be calculated directly

ri(i) | r2()
T, =1 2 + ..,
| B | B

and so on up to the depth of basin i. Substituting this into (2) we get

1 1 B
E:90+<1+E+1r1()+2r2()+...> QJF

| B | | B | N
ri(n) ra(n)) | Bx|
| B | | B, | N
Bi|+ B+ ... ri(D)+.ri(n) | ra(l) +.. 4 ra(n)
=0 1+ FE 1 2
o+(1+E) N + ¥ + 5 +
Now the sum |By| + |By| + ... is just the number of non-goal basin vertices as is the sum
ro + 71 + Therefore we may continue
T0—|—T1—|—... ™ 2
E=9¢ 1+ E)———mM+1—=—+2—=+...
o+ (14 E) N 1y +25+
_ o " r
—90—|—(1—|—E)N—|-(2—|—E)N—I—(3—|—E)N—|-....

This is exactly the direct calculation of E.

Therefore the given forest of trees model in which each vertex counts 1 is equivalent
to a single, linear tree in which each vertex counts equal to the number of vertices in the
original forest which are at that distance from a settling point.

S

Under the equivalency, the P matrix becomes

[P0 p1 P2 .. Pn—1 Pn]
1 0 0 ... 0 0

o1 0 . 0 o

P=19 0 1 0 0 (4)
(000 0 ... 1 0.

In this, p; = r;/N where, as above, N is the cardinality of the domain. It is easy to

~

calculate the characteristic polynomial of this matrix directly, expand det(P — A\I) by
minors along the first row,

—AMH 4 po A + AT L+ Pt A+ P
Upon setting n = 1/\ we get a polynomial we will refer to as the fundamental polynomaial
f) =pon+pin* + ...+ pocan™ +pan" T =L (5)

Notice that the degree of the fundamental polynomial is equal to the depth of the deepest

basin.
As above, letting 8y be the probability of landing in the goal basin, then

bo+po+pi+...+pp=1
Note that f(1) = —6y and
F'(n) =po+2pin+3pan’ + ...+ npaan” "+ (n+ 1)pan™.

This is positive for all n > 0. Hence the unique greater than 1 root of f. denote it n, is
the reciprocal of the Perron-Frobenius eigenvalue A.

The right Perron-Frobenius eigenvector, x, of P is easily calculated. From (4) we get
the recursion equations

Xo = A1
X1 = AX2
Xn—-1 = /\Xn
From this we find
Xk:UkXO, k=1,...,n.

Similarly, from (4)we get the following recursion equations for the components of the left
Perron-Frobenius eigenvector, w,

WopPo —|— W = /\u)o

Wop1 —|— Wo = /\wl
4= (6)
WoPn—1 +wWn = Awn 1

WoPn = Awn

6

From these we get equations for the components in terms of wy;

Wnp = WoNPn

Wp—1 = WO(npn—l + 772Pn)

w1 ==w0(UP1%—nzpz—F---+-n"pn)

Actually, all we need here is the sum of the (omega-sys) system of equations; recall that
by normalization, Y w; = 1,

wo Yy pit Yy wi=1/y
w0(1—90)+1—w0 = 1/77

Solve for wg to get

n—1
wo = . 7
0= (7)
Further recall that under the normalization, Y w;x; = 1; hence, using (root),

=14n°p1 +20°po 4+ ...+ 0" T1p,

wWoXo
1
=npo +20°p1 +30°p2 + ...+ (n+)"y,
wWoXo
=po +2np1 + 30°p2 + ...+ (n+ 1)n"pn
woXon
1
= f'(n)
woXon
From this we get that
1
X0 = ——F 7~
won f'(n)

Finally we calculate s = 1/(y - dg) where Gg is the non-goal partition vector of the
starting distribution; thus

~

6o=(po pP1 ... DPn).
Therefore .
— =poXot+Pixt+ ...+ PaXn

=
= poXo + P17Xo + p2772X0 + ...+ pan"x0
Xo 1

n o nPwof'(n)

So
nin—11"(n)
fo ‘

S =

Run time estimation of retention, acceleration and hitting time

Returning to the fundamental polynomial, we notice that its coefficients are the various
probabilities for restarting a given distance from a local minimum. Thus the linear coeffi-
cient is the probability of restarting on a local minimum, the quadratic coefficient is the
probability of restarting one iteration from a local minimum and so on.

As a result, it is possible to estimate the fundamental polynomial during a run by
keeping track of the number of iterations spent in the downhill processes. Using the
estimate of the fundamental polynomial, estimates of retention and acceleration and hence
also expected hitting time can be affected. As a run proceeds, the coefficient estimates
converge to their right values and so does the estimate of E.

Random Restart with Stochastic Basin Search

In an effort to adapt the analysis of the previous section to genetic algorithms, we now
allow stochastic intra-basin processes. Within each basin there can operate a sub-Markov
processes, which eventually reaches the settling point; then a uniform restart occurs.

The transition matrix for the process is as before

By, 0 ... 0

Q B ... Q
P=|. . :
Q Q ... B,
except that each matrix B; is now the probability transition matrix of an absorbing chain.
The blocks designated by @) are exactly as before. For the calculation of expected hitting
times we may use equation (3) since we again have a basin topological structure. This
equation requires the basin hitting times 7; and, of course, these times depend on the
details of the algorithm.

Suppose the sub-Markov process is simply U, equally likely selection among the |B;|

members of B;. Graph theoretically this is a clique on |B;| vertices. In this case it is easy
to compute T;;

T; = | Byl for uniform selection within basin B;.

Below we show how to calculate the | B;|.
More generally, it is known that if all vertices have the same out degree, then the
basin hitting time is, at most, O(|B;|*).

Shuffle GA, Restriction GA

We define two genetic algorithms to which the basin analysis applies.

Shuffle GA Consider a GA as follows: after the initial population is chosen, an iteration
consists of pairing off all population members followed by a “cross-over” for each pair. In
particular, there is no mutation and there is no selection. Instead, the progress of the
best performer is tracked over iterations. When this indicator no longer improves, the
population is declared to be “niched”. At this point the entire population is thrown out
and a completely new randomly selected population is chosen to begin the process again.

Restriction GA Upon selection of the initial population, a exact duplicate is created from
which mutant alleles will be chosen. Here the population itself is modified in the usual
manner for a genetic algorithm, via mutation, cross-over and roulette wheel selection.
The only stipulation being that mutant alleles are restricted to come from the duplicate
population which remains fixed up until a restart. In this way, none of the original alleles
are lost as they might be through roulette wheel selection. As above, when the population
has niched, it and the duplicate are discarded and the process is restarted.

Basin Analysis

Since the initially selected population freezes the set of alleles in both these genetic algo-
rithms, population space is partitioned into basins as we describe next. Therefore these
genetic algorithms are examples of restart with stochastic basin search.

The goal basin By consists of those gene pools which contain the globally optimal set
of alleles possibly scattered among different population members. For example, consider
a Cartesian product solution space consisting of n-tuples, i.e. “chromosomes” of string
length n, and assume the “alleles” for each coordinate are 0 or 1. Assume the population
size 1s Z. There are 2" distinct chromosomes running from all n bits 0 through all n bits
1. We can identify the chromosomes as the set of integers 0 through 2" — 1, and this set
is the domain of the objective function. If population size were 1 this would also be the
solution space. However, since solutions in a genetic algorithm are populations, the size of

the GA solution space is
M+ Z -1
N = :
7

Using Stirling’s approximation for n! ~ /27nn"e™", we obtain an asymptotic formula for

N

Y

N ~2"% /7!,

Finally assume the minimizer consists of exactly one chromosome. It is of no loss
of generality to assume that it is the chromosome having all 0 bits. Any population
containing this chromosome is considered to be a globally optimal population. The number
of such populations can be counted in the same manner as N above, in addition to the 0
chromosome, such a population may have any other Z — 1 chromosomes; thus

o —Z =2
populations containing the all 0 bits chromosome = (71)

~ 22 (7 — 1)

(8)

asymptotically. Therefore the fraction of populations containing the optimizer outright is

Z

fraction of pop. having optimizer = on” (9)

However, the goal basin By is much larger than this. Any population such that, for
each bit position, some chromosome has a 0 in that position, belongs to the goal basin. The
reason is, eventually, in shuffling the alleles among its chromosomes, one will be assembled
having the string of all 0 bits, the global optima.

It is possible to calculate the size of this goal basin. One way is by the “inclu-
sion/exclusion” principle. Let p; be the property for populations that no chromosome has
a 0 in the first bit position. Similarly for ps, ps, ..., pn. Then a gene pool which fails to
have a 0 bit in some position is exemplified by the union p; U py U...p,. The number of
such populations is given by the sum

S1—52+S53—...£95,
where, letting ¢(P) denote the number of gene pools satisfying property P,

S =c(p1) +c(pz) +...+clpn)
Sy =c(p1 Np2)+e(pr Nps) + ...+ c(Prn_1 N pn)

Sp=cp1Np2N...pn),

that is S5 i1s the sum of the properties taken two at a time, and so on. This then is
the count of populatins not satisfying the goal basin condition so the number we want is
the difference from the total number of populations, N. By the same inclusion/exclusion

principle, S1 = (’f) <2n_1}'Z_1>, Sy = (g) <2n_2}'z_1> and so on. Hence

size of goal basin = F(n, Z,0)

n\ /2" k47 -1 n on—k—1 4 7 _ 1
oz =)L) () ST
n on—k=2 4 7 _ 1
)T

Again from Stirling’s approximation we may derive an asymptotic expression for this,

where

|Bo| ~ (27 —1)"/2\.

The size of the remaining basins can be similarly calculated keeping careful track of
alleles allowed in the various bit positions. The size of even the second basin depends on
the exact nature of the objective function and so must be done on a case by case basis.
One thing does hold in general, By is the largest basin, see below.

10

From the asymptotic formulas above,

|BO| — (2Z_1)n :(1_i)n
N %"f 27 (10)
—n/2

~ €

Ezample
Consider a 10 bit problem and a population size of 4. The size of the domain is 2!0 =

1024. The size of the population space is <210—Z4_1> = 46,081,900, 800. The number of

populations containing x = 0 outright is (210";3_1> = 179,481, 600, this is nearly 4/1000 of
the population space. As above, with no loss of generality, assume the optimizer is + = 0.
The size of the goal basin is

)) () () - ()
) () (o)

— 24,007, 745, 486.

Now we calculate the size of the next best basin, By with settling point b;. We will
see that the size of By depends on how many bits by has in common with by, the more in
common means a smaller Bj.

Assume first that by differs from by in only one bit, for example, by = 1 (all zero bits
except the last). We can count these in the following way, basically the same as the goal
basin above but from those gene pools that have only a 1 bit in the least significant place;
evidently, any population that had at least one 0 in each other place would need to have
all 1’s in the last place or else it would be in the global basin.

F(9,4,0) =
515 259 9\ /131 9\ /67 9\ /35 9\ /19
-9 + — + —
4 4 2 4 3/\ 4 4/\ 4 5/ \ 4
. 9\ /11 9\ (7 . 9\ /5 9 5) L1
6/)\ 4 7)\4 8)\4 4
= 1,611,904, 064.
Next, for contrast, take b; = 1023, 1.e. all 1 bits and therefore differing as much as
possible from by. The basin B will consist of all gene pools with at least one 1 in each

position but not in the goal basin.
Count those with no 1 in the first position, but not in the goal basin,

29 44 -1
4

Co)-C))00

1,285,082, 176.

) —no 1 in first position in goal basin

11

This is exactly F(9,4,1) or equivalently (29+44_1> — F(9,4,0). Similarly count those with

no 1 in the second position, then the third and so on. All these will be the same, so this
round gives

10
(1)F(9,4, 1) = 12,850,821, 760.
Following the inclusion/exclusion technique, we must now subtract from this those
populations that have been doubly counted, that is those with no 1 in both 1st and 2nd

positions, and no 1 in both 1st and 3rd, and so on. For those with no 1 in both 1st and
2nd this is

28 14 -1
4

C)-CTT) OO0)
(O

74,950, 059

) —mno 1 in Ist and 2nd positions in goal basin

or F(8,4,1); equivalently (28+44_1> — F(8,4,0). Counting all combinations of pairs gives

10
() >F(8, 4,1) = 3,372,752, 655

with a total now of 9,478,069,105.

Continuing in this way, we obtain the size of By,

10 10 10
L&|:<1>F@AJ)—<2>F@AJ)+”.1<9>FQAJ)
= 9,953,804, 132.

The following table gives the relative sizes of the largest 18 basins.

Table 1
Basin size relative to the population space
for the top 18 basins (population space = 1)

goal basin 0.5229 Bsg 0.0150| B;2 0.0014
By 0.2056 B~ 0.0150| B3 0.0014
By 0.0159 By 0.0148 | B4 0.0013
B3 0.0159 By 0.0148 | By5 0.0013
By 0.0154 Big 0.0147| Bis 0.0013
Bsx 0.0154 By 0.0015| By;r 0.0012

The above calculation may be generalized to give the following.

Theorem 2. The size of the second largest basin is no bigger than

()£ (v

Hitting time for sub-basin famailies

When the restart (or initial) population is selected, besides belonging to a specific basin,
it also belongs to a sub-basin within that basin. By the type of a population we mean the
number of target bits in each place of the population. Suppose the population is one that
belongs to the goal basin, then it has at least one 0 in each bit position; the type lists
exactly how many 0’s occur in each place. For example, in a 5-bit problem with population
size 4, the type “2,1,4.3,3” means among the 4 chromosomes there are 2 zero bits in the
first place, 1 in the second, all bits in the third place are zero and 3 zero bits in both the
fourth and fifth places.

Given a type designation, we wish to calculate the assembly time by which we mean
the expected time needed for the population to assemble the local (or global) minimizer. Of
course such a calculation depends on the details of the genetic operators. Our shuffle GA is
one of the simplest for this purpose since each iteration merely shuffles the alleles in place
among the chromosomes. Even in this case the calculation is difficult unless the population
is assumed to be “labelled” meaning the chromosomes are distinguishable other than by
genotype. It is a known (cf. the birthday paradox) that for Z < 27/2 the probability of
duplicate chromosomes is very small so that the calculation for a labelled population is a
good approximation to that of a unlabelled population.

Assume then a labelled population of size Z and of type: (k1,k2,...,k,). We may
assume without loss of generality that k; < ky < ... < k,. The total number of such types

I1(7)

and the number of these having all target bits on the same chromosome is, by inclu-
sion/exclusion,

ki \ T i\ 1y (Z -2 i\ 1 (Z — ks
e .
(TG) - GOTLGE2)+ = ()T ()
The probability that a shuffle will assemble to the local minimum is their ratio and the
assembly time T, . j. is the reciprocal of that

Thyooo ke =

For example, in a 10 bit problem with population size Z = 6, the type t = (3,3,...,3) can
be expected to take

(5

. =170

3" -3()"+1

iterations to assemble all 0’s. On the other hand, the type t¢ = (1,1,...,1) will require

t:

Ty = 6% = 10,077,696

iterations on the average to assemble all 0’s.

Pruning Level Effectiveness for 10 bit shuffle GA

SOOT with no pruning
600

Expect ed

Hitting Tinme |

400
200+

-40 20 0o 20 40 60 80 100 120 140 160

Pruni ng Level

Fig. 1

Pruning

Summarizing and amplifying the above facts, we know that the goal basin is by far the
largest basin. The goal basin along with a few others comprise most of the population
space. If a restart occurs in a smaller basin, it has a large chance of doing so on that
basin’s local minimum outright or quickly finding the local minimum. Therefore, the
preponderance of the contribution to the expected hitting time due to the small basins is
their number rather the time spent in them.

On the other hand, the few large basins are very large and their contribution to the
expected hitting time is the rather long search time within them. However, the time spent
within one of these basins depends on the sub-basin type of the restart population. There
is a vast difference in assembly times among the sub-basin types.

14

Pruning Level Effectiveness for 10 bit restriction GA

25007

2000 |

Expect ed
Hitting Time

1500

1000+

500

1 T with no pruning 1.2x10"6

-10 0o 10 20 30 40
I Pruni ng Level
-500 ! _
Fig. 2
Pruning Level Effectiveness for 10 bit standard GA [1]
6001 ith no pruni ng A \
500- x“//\fAv/\/v\/v\va
Expected |
400
i tting Tiwe:
300+
200+
100+
“20 00 20 40 60 80 100 120 140 160

Pruni ng Level

Fig. 3

15

These facts suggest a strategy: an algorithm should allocate only a fixed number of
iteration within a basin, the value of which we refer to as the pruning level. If the local
minimum is not found by this time, a restart should be initiated anyway.

A possible choice for the pruning level is the “Z/2” type, i.e. t = (Z/2,2/2,...,Z/2).
The rationale being that a restart has a 1/2 probability of generating a population with
more target bits per place than this. The matter is still open however.

We close with experimental results on some 20 bit and 10 bit problems.

Multi-modal Test Function

flz)=01a+1-— COS(3%(fx)

Fig. 4

References

[1] Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, Mass. (1989)

[2] Shonkwiler, R., and Van Vleck, E., Parallel speed-up of Monte Carlo methods for
global optimization, J. of Complexity 10(1994) 64-95

16

Pruning Level Effectiveness for 20 bit standard GA [1]
(population size: 20, bit mutation rate: 0.001)

300000 |

250000 -

Expect ed
Htting Tinme
200000

150000 |
100000

50000 |

Wi th no pruning

- 4000 - 2000 O

0~ 2000 4000 6000 80
Fig. 5

0010000 12000 14000

uni ng Leve

17

