
An Analysis of some Stochastic Optimization MethodsbyNeil J. Calkin, R. Shonkwiler and M. C. SpruillGeorgia Institute of TechnologyAtlanta, GA 30332shonkwiler@math.gatech.edu, www.math.gatech.edu/ shenkGiven a real-valued function C, the objective, de�ned on a set of points, the problemis to �nd the optimal function value, maximum or minimum, along with a point whereit occurs. These are the optimum and optimizer respectively. Just to be de�nite, assumehere the objective is such that we want to minimize it, as for example a cost function.The points are often points in the usual sense such as n-tuples in some Cartesian productspace; but they can also be abstract as for example the tours in a Traveling Salesmanproblem. Collectively we refer to them as the domain or solution space and we denotetheir number by N . In this work we will be interested in estimating how long it takes to�nd an optimizer. Since our algorithms are stochastic, we take this to be the expectedrunning time E of the solution method.Generally, optimization methods are iterative and successively approximate the mini-mum cost although progress is not always monotonic. The various solution methods di�erin the way iterations are conducted. Those methods for which each new approximationdepends only on the present one in the iteration loop, can be analyzed as a Markov Chain.Most methods are of this type, including, for example, Genetic Algorithms.Graph Theoretical FormulationSearch methods can also be modeled graph theoretically. We may take the points of (a�nite) solution space to be the vertices of a graph. Every search process has associatedwith it, either explicitly or implicitly, a neighborhood system. The neighborhood of a pointis the set of all other points to which the process can move in one iteration. The edges ofthe graph join a vertex to its neighbors.Retention and AccelerationAs mentioned above, when the successive solutions depend only on the previous solu-tion, the process is a (homogeneous) Markov Chain and is described by a transition matrixP , P = (pij):In this, pij is the probability of a transition from solution i to solution j on any giveniteration. Let �t, the state vector, denote the probability distribution over the solutionspace for the whereabouts of the algorithm on iteration t and let �0 denote the same forthe starting solution. Thus if the starting solution is chosen equally likely, �0 will be therow vector all of whose components are 1=N . The successive states of the algorithm aregiven by the matrix product �t = �t�1P1

and hence �t = �0P t:It is well-known that the expected hitting time E can be calculated as follows. Let P̂denote the matrix which results from P when the rows and columns corresponding to theoptimizers are deleted and �̂t the vector that remains after deleting the same columns of�t. Then the expected hitting time is given byE = �̂0(I � P̂)�11 (1)where 1 is the column vector of 1's.Equation (1) may be re-written as the Neumann seriesE = �̂0(I + P̂ + P̂ 2 + P̂ 3 + : : :)1:By the Perron-Frobenius theorem,P̂ k � �k�! as k !1where � is the right and ! the left eigenvectors for the principle eigenvalue � of P̂ . Theeigenvectors may be normalized so that !1 = 1 and !� = 1. With these substitutions theequation for E becomes E � 1s (1 + �+ �2 + : : :)= 1s 11� �where 1=s = �̂0�. We therefore arrive at the result that two scalar parameters govern theconvergence of the process, retention � and acceleration s. In most applications � is justslightly less than 1 and s is just slightly more than 1. See reference [2].Theorem 1. The convergence rate of a homogeneous Markov Chain is geometric, i.e.Pr(an optimizer is not found by kth iteration) � 1s�k;and the expected number of iterations needed to �nd an optimizer is approximately givenby E = 1s 11� �:Note that this result continues to hold for any collection of points in place of the setof optimizers. Thus one might de�ne a goal to be any point x for which C(x) � c for sometarget cost c. The theorem holds for the these points x.In some cases it is possible to estimate retention and acceleration. One way is froman empirical graph of the complementary hitting distribution chd(�) de�ned bychd(t) = Pr(hitting time � t); t = 0; 1; : : :� 1s�t�1: 2

Plotting log(chd) vs t� 1 gives, asymptotically, a straight line whose slope is � and whoseintercept is � log s. While this technique is adequate for retention, there is a better wayto estimate acceleration, and that is by parallel execution speedup.IIP parallel searchNow consider runningm copies of a given algorithm in parallel, independently of eachother; we call this independent identical processes parallel execution. By independence,their expected hitting time E(m) is given byE(m) = �̂0(I � P̂m)�11= �̂0(I + P̂m + (P̂m)2 + (P̂m)3 + : : :)1:� 1sm 11� �m :If we de�ne speedup SU(m) to be relative to the single-processor running time, we�nd SU(m) = E(1)E(m) = sm�1 1� �m1� �� sm�1mfor � near 1. These results show that IIP parallel is an e�ective technique when s > 1accelerating convergence superlinearly. See reference [2].Iterative Improvement/Tabu SearchAn iterative improvement algorithm is one in which the successive approximations aremonotically decreasing. It is a deterministic process, if run twice starting from the sameinitial point, the same sequence of steps will occur. Eventually the alogrithm reachs a localminimum relative to its neighborhood system and no additional improvement is possible.When this occurs the algorithm must stop.By its nature, an iterative improvement algorithm partitions the solution space intobasins. A basin being all those points leading to the same local minimum. Graph theoret-ically, an iterative improvement alogrithm is a forest of trees. Each tree corresponds to abasin, the root of the tree is the local minimum of the basin.For problems having a di�erentiable objective function, the gradient is generally usedto compute downhill steps required for improvement. In discrete problems, one has a\candidate neighborhood system," that is, each point has a neighborhood of candidates.Candidates are examined until one is found which improves the objective value and thatone becomes the next iteration point. Various heuristics are used for assigning a candidateneighborhood. For example, when the domain is a cartesian space of some sort, neighborscan be the one-coordinate perturbations of the present point.Tabu search is a modi�cation of iterative improvement to deal with the problemof premature �xation in local minima. A short history of visited points is retained bythe algorithm. When no improvement is possible among the candidate neighbors, thenbacktracking is allowed. Thus Tabu Search is not a Markov Chain process.3

Iterative Improvement with Random RestartAnother method for dealing with premature �xation is restart. We envision a processcombining a deterministic downhill operator g, acting on points of the solution space,and a uniform random selection operator U . The process starts with an invocation of Uresulting in a randomly selected starting point. This is followed by repeated invocations ofg until a local minimum is reached. Then the process is restarted with another invocationof U and so on.As above, this process enforces a topology on the domain which is a forest of trees.The domain is partitioned into basins Bi, i = 0; 1; : : : as determined by the equivalencerelation x � y if and only if gk(x) = gj(y) for some k; j. The settling point or localminimum b of basin B is limk!1 gk(x) where x is any point of B. By the depth of a treewe mean its maximum path length.The transition matrix for such a process assumes the following formP = 2664B0 0 : : : 0Q B1 : : : Q...Q Q : : : Bn 3775 :By overload of notation, we also use Bi to denote the matrix corresponding to basin Bi.Each sub-matrix Bi is of the formBi = 266664 p p p : : : p1 0 0 : : : 00 1 0 : : : 0...0 0 : : : 1 0377775 ;the 1's are in the lower triangle but not necessarily on the sub-diagonal. The blocksdesignated by Q are generic for the formQ = 2664 p p : : : p0 0 : : : 0...0 0 : : : 03775 :Let E denote the expected hitting time to the basin B0 containing a minimizer, thegoal basin, and let G denote the same thing for the set of global optima themselves, Let Tibe the expected time to reach the settling point of basin Bi. Let jBij denote the numberof points in basin Bi and �i the ratio jBij=N where N =P jBij, i.e. �i is the probabilityof landing in basin Bi on a restart. Then by decomposition of eventsG = (1 + T0)�0 + (1 + T1 +G)�1 + : : :+ (1 + Tn +G)�nor G = 1�0 1 + nXi=0 Ti�i! :4

And E = �0 + (1 + T1 +E)�1 + : : :+ (1 + Tn +E)�n (2)or E = 1�0 1 + nXi=1 Ti�i! : (3)As above E is also asymptotically given byE = 1s 11� �:Because of the special structure of P in this case, both retention and acceleration can becalculated directly.Solving for � and s, the Fundamental PolynomialIn the forest of trees model, it is clear that all states which are a given number of stepsfrom a settling point are equivalent as far as the algorithm is concerned. For example,equation (3) may be rederived. Let rj(i) be the number of vertices j steps from the localminimizer of basin i and let rj =Pni=1 rj(i) denote the total number of vertices which arej steps from a local minimizer. In particular, r0 = n is the number of local minimizers.Now Ti, the expected time to reach the local minimizer of basin i given that basin ihas been chosen for restart, can be calculated directlyTi = 1r1(i)jBij + 2r2(i)jBij + : : : ;and so on up to the depth of basin i. Substituting this into (2) we getE = �0 +�1 +E + 1r1(1)jB1j + 2r2(1)jB1j + : : :� jB1jN +: : :+�1 +E + 1r1(n)jBnj + 2r2(n)jBnj + : : :� jBnjN= �0 + (1 +E) jB1j+ jB2j+ : : :N + 1r1(1) + : : :+ r1(n)N + 2r2(1) + : : :+ r2(n)N + : : : :Now the sum jB1j+ jB2j+ : : : is just the number of non-goal basin vertices as is the sumr0 + r1 + : : :. Therefore we may continueE = �0 + (1 +E)r0 + r1 + : : :N + 1r1N + 2r2N + : : := �0 + (1 +E)r0N + (2 +E)r1N + (3 +E)r2N + : : : :This is exactly the direct calculation of E.Therefore the given forest of trees model in which each vertex counts 1 is equivalentto a single, linear tree in which each vertex counts equal to the number of vertices in theoriginal forest which are at that distance from a settling point.5

Under the equivalency, the P̂ matrix becomesP̂ = 26666664 p0 p1 p2 : : : pn�1 pn1 0 0 : : : 0 00 1 0 : : : 0 00 0 1 : : : 0 0...0 0 0 : : : 1 0 37777775 : (4)In this, pi = ri=N where, as above, N is the cardinality of the domain. It is easy tocalculate the characteristic polynomial of this matrix directly, expand det(P̂ � �I) byminors along the �rst row,��n+1 + p0�n + p1�n�1 + : : :+ pn�1�+ pn:Upon setting � = 1=� we get a polynomial we will refer to as the fundamental polynomialf(�) = p0� + p1�2 + : : : + pn�1�n + pn�n+1 � 1: (5)Notice that the degree of the fundamental polynomial is equal to the depth of the deepestbasin.As above, letting �0 be the probability of landing in the goal basin, then�0 + p0 + p1 + : : : + pn = 1:Note that f(1) = ��0 andf 0(�) = p0 + 2p1� + 3p2�2 + : : :+ npn�1�n�1 + (n + 1)pn�n:This is positive for all � � 0. Hence the unique greater than 1 root of f , denote it �, isthe reciprocal of the Perron-Frobenius eigenvalue �.The right Perron-Frobenius eigenvector, �, of P̂ is easily calculated. From (4) we getthe recursion equations �0 = ��1�1 = ��2... = ...�n�1 = ��nFrom this we �nd �k = �k�0; k = 1; : : : ; n:Similarly, from (4)we get the following recursion equations for the components of the leftPerron-Frobenius eigenvector, !, !0p0 + !1 = �!0!0p1 + !2 = �!1... + ... = ...!0pn�1 + !n = �!n�1!0pn = �!n (6)6

From these we get equations for the components in terms of !0;!n = !0�pn!n�1 = !0(�pn�1 + �2pn)... = ...!1 = !0(�p1 + �2p2 + : : :+ �npn)Actually, all we need here is the sum of the (omega-sys) system of equations; recall thatby normalization,P!i = 1, !0X pi + nXi !i = 1=�!0(1� �0) + 1� !0 = 1=�Solve for !0 to get !0 = � � 1��0 : (7)Further recall that under the normalization,P!i�i = 1; hence, using (root),1!0�0 = 1 + �2p1 + 2�3p2 + : : :+ n�n+1pn1!0�0 = �p0 + 2�2p1 + 3�3p2 + : : :+ (n+ 1)�n+1pn1!0�0� = p0 + 2�p1 + 3�2p2 + : : :+ (n+ 1)�npn1!0�0� = f 0(�)From this we get that �0 = 1!0�f 0(�) :Finally we calculate s = 1=(� � �̂0) where �̂0 is the non-goal partition vector of thestarting distribution; thus �̂0 = (p0 p1 : : : pn) :Therefore 1s = p0�0 + p1�1 + : : :+ pn�n= p0�0 + p1��0 + p2�2�0 + : : :+ pn�n�0= �0� = 1�2!0f 0(�) 7

So s = �(� � 1)f 0(�)�0 :Run time estimation of retention, acceleration and hitting timeReturning to the fundamental polynomial, we notice that its coe�cients are the variousprobabilities for restarting a given distance from a local minimum. Thus the linear coe�-cient is the probability of restarting on a local minimum, the quadratic coe�cient is theprobability of restarting one iteration from a local minimum and so on.As a result, it is possible to estimate the fundamental polynomial during a run bykeeping track of the number of iterations spent in the downhill processes. Using theestimate of the fundamental polynomial, estimates of retention and acceleration and hencealso expected hitting time can be a�ected. As a run proceeds, the coe�cient estimatesconverge to their right values and so does the estimate of E.Random Restart with Stochastic Basin SearchIn an e�ort to adapt the analysis of the previous section to genetic algorithms, we nowallow stochastic intra-basin processes. Within each basin there can operate a sub-Markovprocesses, which eventually reaches the settling point; then a uniform restart occurs.The transition matrix for the process is as beforeP = 2664B0 0 : : : 0Q B1 : : : Q...Q Q : : : Bn 3775except that each matrix Bi is now the probability transition matrix of an absorbing chain.The blocks designated by Q are exactly as before. For the calculation of expected hittingtimes we may use equation (3) since we again have a basin topological structure. Thisequation requires the basin hitting times Ti and, of course, these times depend on thedetails of the algorithm.Suppose the sub-Markov process is simply U , equally likely selection among the jBijmembers of Bi. Graph theoretically this is a clique on jBij vertices. In this case it is easyto compute Ti; Ti = jBij for uniform selection within basin Bi:Below we show how to calculate the jBij.More generally, it is known that if all vertices have the same out degree, then thebasin hitting time is, at most, O(jBij2). 8

Shu�e GA, Restriction GAWe de�ne two genetic algorithms to which the basin analysis applies.Shu�e GA Consider a GA as follows: after the initial population is chosen, an iterationconsists of pairing o� all population members followed by a \cross-over" for each pair. Inparticular, there is no mutation and there is no selection. Instead, the progress of thebest performer is tracked over iterations. When this indicator no longer improves, thepopulation is declared to be \niched". At this point the entire population is thrown outand a completely new randomly selected population is chosen to begin the process again.Restriction GA Upon selection of the initial population, a exact duplicate is created fromwhich mutant alleles will be chosen. Here the population itself is modi�ed in the usualmanner for a genetic algorithm, via mutation, cross-over and roulette wheel selection.The only stipulation being that mutant alleles are restricted to come from the duplicatepopulation which remains �xed up until a restart. In this way, none of the original allelesare lost as they might be through roulette wheel selection. As above, when the populationhas niched, it and the duplicate are discarded and the process is restarted.Basin AnalysisSince the initially selected population freezes the set of alleles in both these genetic algo-rithms, population space is partitioned into basins as we describe next. Therefore thesegenetic algorithms are examples of restart with stochastic basin search.The goal basin B0 consists of those gene pools which contain the globally optimal setof alleles possibly scattered among di�erent population members. For example, considera Cartesian product solution space consisting of n-tuples, i.e. \chromosomes" of stringlength n, and assume the \alleles" for each coordinate are 0 or 1. Assume the populationsize is Z. There are 2n distinct chromosomes running from all n bits 0 through all n bits1. We can identify the chromosomes as the set of integers 0 through 2n � 1, and this setis the domain of the objective function. If population size were 1 this would also be thesolution space. However, since solutions in a genetic algorithm are populations, the size ofthe GA solution space is N = �2n + Z � 1Z �:Using Stirling's approximation for n! � p2�nnne�n, we obtain an asymptotic formula forN , N � 2nZ=Z!:Finally assume the minimizer consists of exactly one chromosome. It is of no lossof generality to assume that it is the chromosome having all 0 bits. Any populationcontaining this chromosome is considered to be a globally optimal population. The numberof such populations can be counted in the same manner as N above, in addition to the 0chromosome, such a population may have any other Z � 1 chromosomes; thuspopulations containing the all 0 bits chromosome = �2n � Z � 2Z � 1 �� 2n(Z�1)=(Z � 1)! (8)9

asymptotically. Therefore the fraction of populations containing the optimizer outright isfraction of pop. having optimizer = Z2n : (9)However, the goal basin B0 is much larger than this. Any population such that, foreach bit position, some chromosome has a 0 in that position, belongs to the goal basin. Thereason is, eventually, in shu�ing the alleles among its chromosomes, one will be assembledhaving the string of all 0 bits, the global optima.It is possible to calculate the size of this goal basin. One way is by the \inclu-sion/exclusion" principle. Let p1 be the property for populations that no chromosome hasa 0 in the �rst bit position. Similarly for p2, p3, : : :, pn. Then a gene pool which fails tohave a 0 bit in some position is exempli�ed by the union p1 [p2 [: : : pn. The number ofsuch populations is given by the sumS1 � S2 + S3 � : : : � Snwhere, letting c(P) denote the number of gene pools satisfying property P ,S1 = c(p1) + c(p2) + : : :+ c(pn)S2 = c(p1 \ p2) + c(p1 \ p3) + : : : + c(pn�1 \ pn)... = ...Sn = c(p1 \ p2 \ : : : pn);that is S2 is the sum of the properties taken two at a time, and so on. This then isthe count of populatins not satisfying the goal basin condition so the number we want isthe di�erence from the total number of populations, N . By the same inclusion/exclusionprinciple, S1 = �n1��2n�1+Z�1Z �, S2 = �n2��2n�2+Z�1Z � and so on. Hencesize of goal basin = F (n;Z; 0)where F (n;Z; k) = �nk��2n�k + Z � 1Z ��� nk + 1��2n�k�1 + Z � 1Z �+� nk + 2��2n�k�2 + Z � 1Z �� : : :� 1:Again from Stirling's approximation we may derive an asymptotic expression for this,jB0j � (2Z � 1)n=Z!:The size of the remaining basins can be similarly calculated keeping careful track ofalleles allowed in the various bit positions. The size of even the second basin depends onthe exact nature of the objective function and so must be done on a case by case basis.One thing does hold in general, B0 is the largest basin, see below.10

From the asymptotic formulas above,jB0jN = (2Z � 1)n2nZ = (1 � 12Z)n� e�n=2Z : (10)ExampleConsider a 10 bit problem and a population size of 4. The size of the domain is 210 =1024. The size of the population space is �210+4�14 � = 46; 081; 900; 800. The number ofpopulations containing x = 0 outright is �210+3�13 � = 179; 481; 600, this is nearly 4/1000 ofthe population space. As above, with no loss of generality, assume the optimizer is x = 0.The size of the goal basin isF (10; 4; 0) =�10274 �� 10�5154 �+�102 ��2594 ���103 ��1314 �+�104 ��674 ���105 ��354 �+�106 ��194 ���107 ��114 �+�108 ��74�� 10�54�+ 1= 24; 097; 745; 486:Now we calculate the size of the next best basin, B1 with settling point b1. We willsee that the size of B1 depends on how many bits b1 has in common with b0, the more incommon means a smaller B1.Assume �rst that b1 di�ers from b0 in only one bit, for example, b1 = 1 (all zero bitsexcept the last). We can count these in the following way, basically the same as the goalbasin above but from those gene pools that have only a 1 bit in the least signi�cant place;evidently, any population that had at least one 0 in each other place would need to haveall 1's in the last place or else it would be in the global basin.F (9; 4; 0) =�5154 �� 9�2594 �+�92��1314 ���93��674 �+�94��354 ���95��194 �+�96��114 ���97��74�+�98��54�� 9�54�+ 1= 1; 611; 904; 064:Next, for contrast, take b1 = 1023, i.e. all 1 bits and therefore di�ering as much aspossible from b0. The basin B1 will consist of all gene pools with at least one 1 in eachposition but not in the goal basin.Count those with no 1 in the �rst position, but not in the goal basin,�29 + 4� 14 �� no 1 in �rst position in goal basin�29 + 4� 14 �� ��29 + 4� 14 �� 9�28 + 4� 14 �+�92��27 + 4� 14 �� : : :� 1�1; 285; 082; 176: 11

This is exactly F (9; 4; 1) or equivalently �29+4�14 � � F (9; 4; 0). Similarly count those withno 1 in the second position, then the third and so on. All these will be the same, so thisround gives �101 �F (9; 4; 1) = 12; 850; 821; 760:Following the inclusion/exclusion technique, we must now subtract from this thosepopulations that have been doubly counted, that is those with no 1 in both 1st and 2ndpositions, and no 1 in both 1st and 3rd, and so on. For those with no 1 in both 1st and2nd this is�28 + 4� 14 �� no 1 in 1st and 2nd positions in goal basin�28 + 4� 14 �� ��28 + 4� 14 �� 8�27 + 4� 14 �+�82��26 + 4� 14 �� : : :�8�27 + 4� 14 ���82��26 + 4� 14 �+ : : :+ 174; 950; 059or F (8; 4; 1); equivalently �28+4�14 �� F (8; 4; 0). Counting all combinations of pairs gives�102 �F (8; 4; 1) = 3; 372; 752; 655with a total now of 9,478,069,105.Continuing in this way, we obtain the size of B1,jB1j = �101 �F (9; 4; 1) ��102 �F (8; 4; 1) + : : : ��109 �F (1; 4; 1)= 9; 953; 804; 132:The following table gives the relative sizes of the largest 18 basins.Table 1Basin size relative to the population spacefor the top 18 basins (population space = 1)goal basin 0.5229 B6 0.0150 B12 0.0014B1 0.2056 B7 0.0150 B13 0.0014B2 0.0159 B8 0.0148 B14 0.0013B3 0.0159 B9 0.0148 B15 0.0013B4 0.0154 B10 0.0147 B16 0.0013B5 0.0154 B11 0.0015 B17 0.001212

The above calculation may be generalized to give the following.Theorem 2. The size of the second largest basin is no bigger thanjB0j ��n0��2n + Z � 1Z �� n�1Xr=1�nr�F (n� r; Z; 0):Hitting time for sub-basin familiesWhen the restart (or initial) population is selected, besides belonging to a speci�c basin,it also belongs to a sub-basin within that basin. By the type of a population we mean thenumber of target bits in each place of the population. Suppose the population is one thatbelongs to the goal basin, then it has at least one 0 in each bit position; the type listsexactly how many 0's occur in each place. For example, in a 5-bit problem with populationsize 4, the type \2,1,4,3,3" means among the 4 chromosomes there are 2 zero bits in the�rst place, 1 in the second, all bits in the third place are zero and 3 zero bits in both thefourth and �fth places.Given a type designation, we wish to calculate the assembly time by which we meanthe expected time needed for the population to assemble the local (or global) minimizer. Ofcourse such a calculation depends on the details of the genetic operators. Our shu�e GA isone of the simplest for this purpose since each iteration merely shu�es the alleles in placeamong the chromosomes. Even in this case the calculation is di�cult unless the populationis assumed to be \labelled" meaning the chromosomes are distinguishable other than bygenotype. It is a known (cf. the birthday paradox) that for Z < 2n=2 the probability ofduplicate chromosomes is very small so that the calculation for a labelled population is agood approximation to that of a unlabelled population.Assume then a labelled population of size Z and of type: (k1; k2; : : : ; kn). We mayassume without loss of generality that k1 � k2 � : : : � kn. The total number of such typesis nY2 �Zki�and the number of these having all target bits on the same chromosome is, by inclu-sion/exclusion,�k11 � nY2 �Z � 1ki � 1���k12 � nY2 �Z � 2ki � 2�+ : : :��k1k1� nY2 �Z � k1ki � k1�:The probability that a shu�e will assemble to the local minimum is their ratio and theassembly time Tk1;:::;kn is the reciprocal of thatTk1;:::;kn = Qn2 �Zki�Pk1j=1 �k1j �Qni=2 �Z�jki�j� :13

For example, in a 10 bit problem with population size Z = 6, the type t = (3; 3; : : : ; 3) canbe expected to take Tt = �63�93�52�9 � 3�41�9 + 1 = 170iterations to assemble all 0's. On the other hand, the type tt = (1; 1; : : : ; 1) will requireTtt = 69 = 10; 077; 696iterations on the average to assemble all 0's.Pruning Level E�ectiveness for 10 bit shu�e GA
Pruning Level

Hitting Time
Expected

with no pruning

0

200

400

600

800

-40 -20 0 20 40 60 80 100 120 140 160Fig. 1PruningSummarizing and amplifying the above facts, we know that the goal basin is by far thelargest basin. The goal basin along with a few others comprise most of the populationspace. If a restart occurs in a smaller basin, it has a large chance of doing so on thatbasin's local minimum outright or quickly �nding the local minimum. Therefore, thepreponderance of the contribution to the expected hitting time due to the small basins istheir number rather the time spent in them.On the other hand, the few large basins are very large and their contribution to theexpected hitting time is the rather long search time within them. However, the time spentwithin one of these basins depends on the sub-basin type of the restart population. Thereis a vast di�erence in assembly times among the sub-basin types.14

Pruning Level E�ectiveness for 10 bit restriction GA
Hitting Time

Expected

Pruning Level

with no pruning 1.2x10^6

-500

0

500

1000

1500

2000

2500

-10 0 10 20 30 40Fig. 2Pruning Level E�ectiveness for 10 bit standard GA [1]
Hitting Time

Expected

with no pruning

Pruning Level
0

100

200

300

400

500

600

-20 0 20 40 60 80 100 120 140 160Fig. 315

These facts suggest a strategy: an algorithm should allocate only a �xed number ofiteration within a basin, the value of which we refer to as the pruning level. If the localminimum is not found by this time, a restart should be initiated anyway.A possible choice for the pruning level is the \Z=2" type, i.e. t = (Z=2; Z=2; : : : ; Z=2).The rationale being that a restart has a 1=2 probability of generating a population withmore target bits per place than this. The matter is still open however.We close with experimental results on some 20 bit and 10 bit problems.Multi-modal Test Functionf(x) = 0:1x+ 1� cos(60x30+x)
x

f(x)

0

1

2

3

4

5

0 5 10 15 20 25 30Fig. 4References[1] Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,Addison-Wesley, Reading, Mass. (1989)[2] Shonkwiler, R., and Van Vleck, E., Parallel speed-up of Monte Carlo methods forglobal optimization, J. of Complexity 10(1994) 64-95
16

Pruning Level E�ectiveness for 20 bit standard GA [1](population size: 20, bit mutation rate: 0.001)
Expected

Hitting Time

Pruning Level

with no pruning

0

50000

100000

150000

200000

250000

300000

-4000 -2000 0 2000 4000 6000 8000 10000 12000 14000Fig. 5

17

