Parallel Genetic Algorithms

R. Shonkwiler
School of Mathematics
Georgia Institute of Technology
Atlanta, GA. 30332
e-mail: shenk@math.gatech.edu

Abstract

A universal method for parallelizing a Ge-
netic Algorithm is given. Referred to as IIP
parallel, independent and identical process-
ing, theoretical analysis shows that the tech-
nique achieves a speedup using m processors
given by ms™ ! where the acceleration factor
s is a parameter depending on the details of
the GA. Typically s > 1. The results are il-
lustrated on two problems small enough that
the exact calculation of s can be made and
compared to the asymptotic estimates. The
results are also illustrated on the non—trivial
Inverse Fractal Problem. It is noted that the
same results have been attained elsewhere on
a wide variety of well known significant prob-
lems.

1 INTRODUCTION

Our method for parallelizing a Genetic Algorithm is
simple — run the identical algorithm on each proces-
sor each independently of the other. (Of course the
random number generator is seeded differently in each
process.) The only communication between processes
is that one of them gathers the ending result of them
all and reports to the user. We call this identical,
independent processing IIP parallel. Can this sim-
ple technique be effective? In fact in numerous ap-
plications including the 1-D fractal inverse problem
(Shonkwiler, Mendivil, Deliu 1991), optimizing net-
work throughput (Akyildiz, Shonkwiler 1990), the join
problem (Omiecinskii, Shonkwiler 1990), the n-queens
problem (Ghannadian, Shonkwiler, Alford 1993), the
k-clique problem (Miller, Shonkwiler 1992), and the
catalog search problem (Carlson, Ingrim, Shonkwiler
1993), it has achieved superlinear parallel speedup.

These empirical results are now supported theoreti-
cally (Shonkwiler, Van Vleck 1993). It is the aim of
this paper to explain the basis for IIP speedup as ap-
plied to Genetic Algorithms and to illustrate it with
two small problems for which exact calculations can
be done. In summary, the ITP speedup, SU, expected
from the parallelization of a GA using m processors,
is given by
SU ~ms™ !

where the acceleration parameter s depends on the de-
tails of the algorithm but is usually greater than 1.

Assume the GA is seeking the maximum of some fixed
real-valued function, or objective, f defined on a set
D called the domain. Suppose the GA consists of a
sequence of “populations” Xz, &k = 0,1,2,..., that is
finite subsets of D,

Xk:{m’f,a:’;,...,mﬁ} c D,

and a stochastic transition scheme O
X1 = O(Xy),

carrying the k" population into the k4 15¢. Of course
the transition scheme can be complex and will de-
pend upon the objective f. We will suppose how-
ever that the transition process is such that Xpi;
depends only on Xj and perhaps on k£ but not on
Xi_1,Xk—2,...,X0. Then we may take as the states
of a Markov Chain the set of all possible populations
Ay, As,...,An. We assume that the collection A of
these populations is finite (but very large in number
generally). This assumption is always satisfied for a
Genetic Algorithm. The transition scheme defines a
transition probability matrix P as the matrix of prob-
abilities p;; where

pijZPr(Xk+1=Aj|Xk=Ai), i,j:1,2,...,N.

Here X}, is the random variable representing the spe-
cific population selected on the k' iteration of the

algorithm. In most GA’s the probabilities p;; do not
depend on the iteration count k and we will make this
assumption.

2 EXPECTED HITTING TIME

The optimization problem is solved at time k if an
optimizing domain point x, belongs to the population
Xi. Let G denote the set of populations containing
T4, then we are interested in the first time, k = 6, that
X € G. However since the process is stochastic, this
could be different from run to run. The expected hitting
time is the average 6 over all possible runs. Now by
definition

E(0) = itPr(G =),

but it is easy to see that this sum may be re-written
as

E() =) Pr(0 >1). (2.1)
t=1

We refer to the sequence Pr(6 > t),t =1,2,... as the

complementary hitting time distribution.

Let P be the matrix resulting from P by the dele-
tion of every row and column containing a population
A € G. Tt can be shown, cf. (Shonkwiler, Van Vleck
1993), that the terms of the complementary hitting
time distribution are given by the dot products

Pr(0>k)=a-P*'1, k=1,2,..., (22
where 1 is the vector of appropriate dimension all of
whose terms are 1 and & is the goal states deleted start-
ing distribution on the populations. That is the "
component «; of & is the probability that the genetic
algorithm begins with the %" population A; (deleting
goal states).

3 THE ACCELERATION FACTOR s

By the Perron-Frobenius Theorem (Seneta 1981) P has
a positive eigenvalue A equal to its spectral radius, i.e.
A is the largest in magnitude eigenvalue. Under mild
additional conditions on P (irreducibility and aperiod-
icity) A will be the only eigenvalue of this magnitude
and

0< A<

In terms of the Genetic Algorithm, A represents the
probability of not finding a goal population in one it-
eration of the algorithm and so 1—) is the probability
that the goal will be found in one iteration. These
probabilities apply however only after special effects

due to starting up the Genetic Algorithm have died
out. The acceleration accounts for the start-up effect.

Let x and w be positive right and left eigenvectors
of P corresponding to A, (guaranteed to exist by the
Perron-Frobenius Theorem), that is
Py =\ and wl'P® = AT

where w’' is the transpose (row vector) of w. By nor-
malization we may assume w is a probability vector,
Y w; = 1 and that w'x = 1. Then w and y are
uniquely determined.

Definition. Define the acceleration s to be the recip-
rocal dot product

sTl=

"X (3.1)

jo)

where & and are as above. Then the following holds
(Shonkwiler, Van Vleck 1993)

Theorem.

1 ~
s~ != lim —a&- P*F1.

Substituting the indicated limiting value into (2.2)
gives an approximate expression for the expected hit-
ting time

E() = iPr(sz)

2
M2
cnl
>
|

(3.3)

4 PARALLEL GENETIC
ALGORITHMS

As stated in the introduction, suppose m GA’s are
run independently in parallel. Let 61,05,...,0,, be
the respective hitting time random variables for each
process. Note that this parallel GA solves the prob-
lem when the first independent process does, i.e. the
expected hitting time, O, for the parallel GA is given
by

e = min{01,92, .. ,Gm}

It is evident that the event © > t is equivalent to the
event

01>t and 6>t and---and 6, >t.

Therefore by independence we have the following.

Proposition. For m identical, independent processes

Pr(©@ >¢)=(Pr(6d >¢t))™, t=1,2,... (4.1)
and so
E, = E@©)= i(Pr(e >)"~ (s
o1
~ I m (4.2)

where F,, is the expected hitting time for m parallel
processes.

Definition. By speed-up for m processors we mean

the ratio 5(60)

Speed-Up = ——=

p p E(0)

of the expected running time for one process to that
of the m parallel processes.

(4.3)

Theorem. Under the conditions stated above, the
speed-up for m processes is given by

— gm—1 1-\" + 0(1 o)\m)

T—X
— ms™m~1 as A\ — 1.

Speed-up

Here O(1 — A™) means the order of the error is some
constant times 1 — A™. The proof is given in (Shon-
kwiler, Van Vleck 1993).

Note that for A near 1, the ratio (1 — A™)/(1 —) is
near m and so the speed-up is approximately ms™ 1.
Hence speedup is superlinear for s > 1, see fig. 1.

5 RESULTS

We include results for two problems small in size so
that exact theoretical calculations can be made. The
password problem is characterized by its completely
neutral, totally flat objective function. It serves as a
reminder why it is that general results about Monte
Carlo methods are hard to come by. The Sandia
Mountain problem is characterized by its relatively
large basin for the suboptimal minima compared with
the small basin for the true global minimum (hence is
“deceptive” see (Goldberg 1989)).

We also include results for the non—small and difficult
Inverse Fractal Problem. Despite intensive efforts to

200
175 s>1
150
125
Speedup 100
75
50

25

50 100 150 200

Number of processors m

Figure 1: SPEEDUP FOR A = 0.99

solve this problem analytically, it remains open in that
regard, (Vrscay 1991). However a Genetic Algorithm
can be highly effective in computing approximate so-
lutions, see (Shonkwiler, Mendivil, Deliu 1991).

5.1 PASSWORD PROBLEM

Assume that a J character password chosen from an
alphabet of M symbols is to be found. Trying a pro-
posed solution results in either failure or success, there
are no hints. The domain D counsists of all strings of
J legal symbols, card(D) = M7, and for x € D the
objective function will be taken as

1, if z is correct
)= {

0, if x is incorrect.

In reality, except for the extreme nature of its objec-
tive function, the password problem is typical of very
many problems encountered in practice. Indeed, any
problem u = f(z1,...,x,) defined on a rectangle

aigxigbi, izl,...,n

in n-dimensional Euclidean space R™ has this form
computationally. For if the binary floating point rep-
resentations of each component consisting of md man-
tissa digits, ed exponent digits, and one sign digit

IR % % i
$i—8b1b2...bmdel...eed

are concatenated, there results a password problem
with J = n(md+ ed+ 1) characters from the alphabet
{0,1} of size M = 2. In this way such a problem
with a general objective function becomes a password
problem with hints.

Returning to the problem at hand, we attempt its cal-
culation by a GA having a single unary stochastic op-
erator, i.e. a mutation. Our unary operator will be

to modify the present (failed attempt) = by selecting
a character position at random from 1,2,...,J and
replacing the letter of = at that position by a ran-
domly chosen letter from the alphabet, one character
uniform replacement. There results a transition prob-
ability matrix whose row for x, unless x is the solution,
has a zero in every column corresponding to a y € D
differing from z in two or more positions. The proba-
bility for those y € D differing in exactly one position
from z is 1/(JM), and the probability that x itself is
reselected is 1/M.

Note that P is symmetric. Further p (equal to P with
the goal row and column removed) is also symmetric
and has unequal row sums. The latter follows since
some states of P lead to the goal while others do not.

With the choices J = 4, and M = 5 the matrix P
is 625 x 625 and P is 624 x 624 and it is possible to
calculate all the relevant optimization characteristics
exactly. Assuming a uniformly selected starting state,
in Table 1 we show the principle eigenvalue A, the s-
factor s, the exact expected hitting time F, and the
exact expected hitting times Fo, F4, Eg for 2, 4, and
8 multiprocesses implementations. The expectation E
is obtained from the limit (2.1) or can be calculated
directly (see (Isaacson, Madsen 1976)). The expecta-
tions Eo, F4, and FEg are calculated from (4.2). Further
in Table 1 we give the averaged empirical expectations
E2, E4, Eg of 100 runs (simulations of the Markov
Chain) and the corresponding empirical speed-up’s.
By “time” in the runs we mean the number of iter-
ations taken by the solver process. We (artifically)
exclude the possibility of starting in the goal state.

Table 1
Password Problem without hints
A =.998830 s = 1.000255 -
E = 854.7 E =870.2 -
Ey =427.5 Ey =424.2 SU; =1.99
E, =213.9 E, =235.7 SU, =3.99
Es =107.1 FEg =125.9 SUg = 7.98

5.2 GENETIC ALGORITHM SOLVER FOR
THE SANDIA MOUNTAIN PROBLEM

Let the domain D be the set of integers D =
{0,1,...,N}, card(D) = N + 1, and let the objective
function be

N—x
— N_1» .'17:1,2,...,N
f(@) {—1, z =0,

i.e. a long gradual uphill slope from z = N to z = 1,
but then a steep drop at = 0, see fig. 2. The global

1
0.5
Objective
value 1 2 3 4 5 6 71
-0.5 X
-1

Figure 2: SANDIA MOUNTAIN PROBLEM

minimum of —1 occurs at x = 0 and this minimum
has a basin of two domain points. There is also a local
minimum of 0 occurring at x = N. This basin is of
size N. To keep the example within reasonable size let
N =7 and represent the N + 1 = 8 domain values in
binary

045 (000)2, 1<+ (001)g,..., 7 <> (111),.

We employ a standard Genetic Algorithm (cf. (Gold-
berg 1989)) with a population size of 2, reproductive

success taken in proportion to fitness ¢ which will be
defined as

p(z) =2 — f(x),

crossover based on bit strings and a bit mutation rate
of p,, = 0.1. The number of distinct populations is

8-9

zeD,

An iteration of the algorithm will consist of: (1) a
reproduction of the present population, each “individ-
ual” in proportion to its fitness; let Pgr be the 36 x 36
transition probability matrix for this process. Next
(2) a crossover or mating process based on bit strings.
Note that the mate selection matrix is just the iden-
tity because the population size is 2. For this 3 bit
example the two crossover sites, between bits 1 and 2
or between bits 2 and 3, are chosen equally likely. Let
P, denote the 36 x 36 matrix for this process. Then
(3) a mutation in which one of the two population
members is chosen equally likely and each bit of the
chosen member is reversed (0 — 1 and 1 — 0) with
probability p,, independently; P,, denotes the result-
ing 36 x 36 transition matrix. Finally (4) the required
function evaluations are performed to obtain the next
generation’s fitness and to update the “best” random
variable B;.

These processes may be elaborated as follows. During
the reproduction process the population < 7,5 > will

become one of the populations < i,i > or < i,j >, or
< 4,7 > .If ¢; = ¢(i) is the fitness of i € D, then

the probability of obtaining < 4,7 > is (¢ﬁ"¢,)2, of <
iTPj
i,j > s 2(242) and of < j,j > is (5%-)". During

crossover the population < i,j > with corresponding
bit strings ¢ = b1b2bs and j = B; B2 Bs will become

1
b1B3B3s and Bjbobs with probability 3

or
b1b2Bs

1
and Bj;Bsbs with probability 3

Finally, under mutation, the population < i =
(b1babs3)2, j = (B1B2Bs)2 > will become, with prime
denoting bit complementation,
bibobs and BiBy;Bs with probability (1 — pm)3
or
1
biboby and B;BsBs with probability§(l—pm)Qpm

and so on until

1
bibosbs and B)B,Bj with probability 5pfzn.

The 36 x 36 overall transition probability matrix P is
the product of its three component parts reproduction,
crossover and mutation by the independence of these
processes, and works out to be

729 .081000
425 324000

P=PRrP.Py= . : :
.000 .000729

Note that each of the 8 populations < 0,0 >,..., <
0,7 > containing 0 solve the problem. Therefore the
deleted transition matrix P is 28 x 28 and omits the
first 8 rows and columns of P.

As in the first example we may calculate the optimiza-
tion characteristics from the transition probability ma-
trix. These data are shown in Table 2. Note that the
theoretically predicted speedup of over 11 for 8 pro-
cessors was in fact bourne out experimentally.

5.2.1 Remark

This example affords a simple explanation as to why
superlinear speed-up is possible. There is a certain
(relatively large) probability p that the process will be
in the sub-optimal state z = 7. (Here p = .185 and is

the last component of the normalized left eigenvector
w for 15) By contrast the probability ¢ that the pro-
cess will be in state x = 1, the threshold of the basin
for the solution, is small (¢ = .029, the first compo-
nent of w). However for m independent processes, the
probability they all will be in state z = 7 is p™ — small
for large m, while the probability thatat least one of
the m processes is in state x = 1 increases with m,
1—(1—g)™. But it only takes one process to find the
solution.

Table 2
Sandia Mountain Problem
A =.975624 s = 1.1488966 -
E =36.23 E =37.76 -
Ey =16.58 E> =16.61 SU; = 2.19
E, =730 E,=17.10 SU, = 4.96
Eg =3.22 Es = 3.20 SUg = 11.25

5.3 THE INVERSE FRACTAL PROBLEM

A description appears in detail in (Shonkwiler, Men-
divil, Deliu 1991), here we give an abbreviated descrip-
tion and the results.

5.3.1 Fractal Sets Generated by Iterated
Function Systems

Let W = {wy, wa, ..., w,} be a finite set of affine maps
of the unit interval I = [0, 1] into itself, that is maps
of the form
w(z) = sz + a, 0<z<1

Here the parameter s is the scale factor and the param-
eter a is the translation. Alternatively, putting [= a
and r = s + a, then

w(z) =1(1-2z)+rz. (5.3.1)
In this form the unit interval is seen to map into the
interval between [and r and so 0 < [,r < 1. We
impose the condition that the image set w(I) be a
strict subset of I, i.e. that w be a contraction map

and |s| < 1. In this case such a map w has a fixed
point in [.

Associated with every such collection W is the attrac-
tor A, that is the unique subset A C I characterized
by the selfcovering property that

n

A= U w;(A).

i=1

(5.3.2)

For the proof of the existence and uniquness of an at-
tractor which satisfies (5.3.2) see (Barnsley 1988). It
is however easy to obtain points in A. Obviously the
fixed point z} of each map w; in W belongs to A by
(5.3.2). Further this equation provides that if x € A
then also w;(z) € A for each ¢ =1,2,...,n. It follows
that for every composition f = w;, w;, ---w;,, where
ij € {1,...,n}, for all j = 1,...,k, if 2 € A then
also f(z) € A. It is in this way that W is an iterated
function system (IF'S).

Moreover the observation above provides a method to
visualize an attractor on a computer screen. Starting
from the fixed point z*, say of map w;, choose i1 €
{1,2,...,n} at random and plot x; = w;, (z*). (To
make the image easier to see, plot a short vertical line
at x1.) Now repeat this step with z; in place of z*
and x5 = w;, (z1) in place of z1, then repeat with x5
in place of z1, e.t.c. until say 10,000 points have been
plotted. This construction is known as the Random
Tteration Algorithm for constructing the attractor.

A difficulty is that the mapping W — Ay, which as-
signs to an IFS W its attractor Ay, is not one-to-one.

As an example the Cantor set is the attractor of the
IFS

2
w(z) = 3% wa(z) = 3% + 3
as well as the attractor of the distinct IF'S
1 1 1 2
w’l(ac)z—gm—l—g, wé(m):§m+§

Typically the attractor of an IFS is a fractal set.

5.3.2 The Inverse Problem

The inverse attractor problem consists in finding an
IFS W whose attractor A is given. This is also known
as encoding an attractor.

To solve the inverse problem we need a notion of close-
ness or distance between two subsets A and B of I.
The Hausdorff metric, h(A, B), which is defined as

h(A,B) = sup inf |x — y| + sup inf |y — z
() xegy6B| Yl yegxeAw |
works nicely.

The level surfaces which result using this distance
function is very pathological even for small numbers of
maps. The surfaces rise and fall abruptly with small
changes in parameter values and have numerous local
minima, see (Mantica, Sloan 1989).

5.3.3 Results

A Genetic Algorithm, described in (Shonkwiler, Men-
divil, Deliu 1991), was run both on parallel platforms

700
600
500
400
Speedup
300
200

100
10 15 20 25

Number of Processors m

Figure 3: PARALLEL SPEEDUP FOR THE IN-
VERSE FRACTAL PROBLEM

according to the IIP scheme and on a single processor
computer.

The runs were made on randomly generated IFS at-
tractors discretized to a resolution of 512. Only 2 and
3 map attractors were tested (4 and 6 parameter prob-
lems). Despite the small number of maps, the result-
ing attractors are quite complex and difficult to solve.
The run times are on a Sun Sparc workstation and
take about 1 hour for 10,000 iterations.

For the parallel algorithm the natural statistic to show
is speed-up,

time for a single process

speed-up = time for the parallel process

However for a stochastic algorithm there is an inherent
difficulty. For any time T however large (expressed
in iterations until solution say), there is a non-zero
probability the algorithm will take T' time to finish. So
it is that in 24 runs on the problem above, 10 required
an unknown number of iterations exceeding 100,000
in order to solve it. A solution was defined to be the
achievement of a Hausdorff distance of less than 500.

Nevertheless by using the 100,000 value for these runs,
we obtain an estimate of the expected run time which
is therefore understated, thus our calculated speed-ups
are under estimates of the actual ones.

The observed speed-up, shown in fig. 3, is on the or-
der of 600 to 700 for 10 to 20 processes. The runs
were made on a LAN of Sun Sparc stations. The
straight line in this figure just above the horizontal
axis is linear speedup. As shown in (Shonkwiler, Van
Vleck 1993), such large speedups are possible for a “de-
ceptive” problem where the time to reach the goal can

be infinite. This is precisely the case where IIP par-
allel excels as the independent processors avoid being
dragged to the same sub-optimum point.

6 CONCLUSIONS

We have shown that superlinear speed-up is possible
with these types of algorithms. A given Monte Carlo
method is characterized by its deleted transition prob-
ability matrix P and in particular its hitting time ex-
pectation depends on the complementary hitting time
distribution. Two parameters, the principle eigenvalue
X of P, and the s-factor, completely describe the tail
of the hitting time distribution; asymptotically

Pr(f > k) = s AFL.

The complementary hitting time distribution can be
used to rigorously compare two Genetic Algorithms.

Finally one intriguing consequence of a superlinear
parallel algorithm is the possibility of a new single pro-
cess algorithm. In this case it is the running of multiple
processes on a single processor machine. This can be
simply achieved. One merely sets up the data struc-
tures for several “colonies”. Then one loops through
these colonies processing each in turn according to a
single process GA. We refer to this as in code parallel.

References

Akyildiz, I., Shonkwiler, R., “Simulated Annealing
for Throughput Optimization in Communication Net-
works with Window Flow Control,” IEEE-ICC Con-
ference Proceedings, Vol. 3 (1990), 728-738.

Barnsley, M.F., Fractals Everywhere, Academic Press,
NY, (1988).

Carlson, S., Ingrim, M., and Shonkwiler, R., “A Com-
parative Evalution of Search Methods Applied to Cat-
alog Selection,” Proceedings of the International Con-
ference on Design of the SME, (1993).

Ghannadian, F., Shonkwiler, R., and Alford, C., “Par-
allel Simulated Annealing for the n-Queen’s Problem,”
Proceedings of the 7th International Parallel Process-
ing Symposium of the IEEE, Newport Beach (1993).

Goldberg, D., “Genetic Algorithms in Search, Op-
timization and Machine Learning”, Addison-Wesley,
Reading, Mass. (1989).

Holland, J., “Adaptation in Natural and Artificial
Systems”, Univ. of Michigan Press, Ann Arbor, MI
(1975).

Isaacson, D., and Madsen, R., “Markov Chains Theory

and Applications”, Krieger Pub. Co., Malabar, FL
(1976).

Mantica, G., and Sloan, A., “Chaotic optimization
and the construction of fractals: solution of an inverse
problem”, Complex Systems, 3, (1989) 37-62.

Miller, K., and Shonkwiler, R., “Genetic Algo-
rithm/Neural Network Synergy For Nonlinearly Con-
strained Optimization Problems,” Proceedings of the
1992 International Joint Conf. on Neural Networks,
Baltimore (1992)

Omiecinskii, E., Shonkwiler, R., “Parallel Join Pro-
cessing Using Nonclusterded Indexes for a Shared
Memory Multiprocessor,” Proceedings of the IEEE
Symposium on Parallel and Distributed Processing,

(1990).

Seneta, E., “Non-negative Matrices and Markov
Chains”, Springer-Verlag, New York (1981).

Shonkwiler, R., and Van Vleck, E., “Parallel speed-up
of Monte Carlo methods for global optimization”, to
appear in Journal of Complexity, (1993).

Shonkwiler, R., Mendivil, F. and Deliu, A., “Genetic
Algorithms for the 1-D Fractal Inverse Problem”, Pro-
ceedings of the Fourth International Conference on Ge-
netic Algorithms, edited by Belew, R. and Booker, L.,
Morgan Kaufmann, San Mateo, CA, (1991) 495-501.

Varga, Matrix Iterative Analysis, Prentice-Hall, En-
glewood Cliffs, NJ (1963).

Vrscay, E. R., “Moment and collage methods for the
inverse problem of fractal construction with Iterated
Function Systems”, in Fractals in the Fundamental
and Applied Sciences, Peitgen, H.-O., Henriques, J.
M., and Penedo, L.F., Editors, Elsevier, (1991).

