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Abstract.

The optimization method employing iterated improvement with random restart (I2R2)

is studied. Associated with each instance of an I2R2 search is a fundamental poly-

nomial, f(x) = p0x + p1x
2 + . . . + pdx

d+1 − 1, in which the coefficient pk is

the probability of starting a search k improvement steps from a local minimum. The

positive root η of f can be used to calculate the convergence and speedup properties

of that instance.

Since the coefficients of f are naturally related to the search, it is possible to

estimate them online if an a priori estimate of the size θ of the goal basin is available,

for example by analysis or prior experience. In this case, the runtime statistical

estimate of η converges many times faster than the estimates of the coefficients

themselves.

The foregoing is illustrated with an application to the traveling salesman prob-

lem, TSP, using k-change as the improvement discipline. Among other things it is

shown that a k-change improvement can be affected by k 2-changes, that θ = 1

for convex city sets, and that good estimates of θ can be made from a reduced TSP

related to the given one.
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§1 Introduction

We present a new study of the Random Restart method for global optimization over a

discrete set. Random Restart has the virtue that it is natural, amendable to analysis, and

yet robust and effective. The method, and its analysis, can serve as a prototype for gaging

more sophisticated optimal search methods. Indeed, most of the development derived

here, including the power series analogue of the fundamental polynomial, has been carried
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over to more general restarting methods [1], which are not always Markov Chains. Our

approach also invites the possibility of a classification of discrete optimization problems

in terms of the character of the of the search tree generated by the imposed topology on

the problem. For the Traveling Salesman Problem (TSP), for example, the search tree is

short and bushy, see Figures 12 and 13.

The optimization problem for the objective f defined on the (very large but finite) set

Ω can be organized in terms of three separate problems:

1. finding the globally optimal value f∗ = minx∈Ω f(x).

2. finding at least one global optimizer x∗ ∈ S∗ among the set of optimizers S∗ = {x ∈
Ω : f(x) = f∗}.

3. assuring that (1) is correct.

If f is unrestricted in the sense that for each x ∈ Ω, f(x) can have any value at all, then

the optimization problem cannot be solved except by the method of exhaustion in which

each and every point of Ω is examined. For only after examining each and every point can

(1) be assured.

A major result of Simulated Annealing, Hajek’s Theorem, settles all three problems,

but not in finite time, since it asserts

lim
t→∞

Pr(Xt 6∈ S∗) = 0,

where Xt is the random variable denoting the state of the process at time t, provided the

anneal is cooled, T → 0, according to

T =
d

log(t + 1)
.

In this, d is the depth of the deepest non-goal basin, [2],

It should be noted that for the class of problems known as inverse problems the desired

result f(x∗) is known in advance; it only remains to find where it occurs, x∗. An inverse

problem is turned into an optimization problem by assigning a distance d(f(x), f(x∗))

between objective values, then the global optimum is d = 0. In this case, item (1) is not

an issue.

If the optimal value cannot be assured by the method at hand, then settling issue

(1) falls within the realm of an optimal stopping problem. That is, under what conditions

should the search be terminated. Since the global optimum cannot be known with certainty,

the answer can only be probabilistically asserted, one is forced to settle for a solution which

is, hopefully, near optimal.

Under these conditions, the emphasis shifts to dealing with issue (2), that is, the

search itself and designing strategies for searching efficiently. A traditional measure of

search efficiency is the convergence rate to the set S∗, or S∗ enlarged to include near
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optimal points, the goal set. This is the rate of decrease in probability that a goal state

has not been found by time t

Pr(Xi /∈ S∗, i = 1, 2, . . . , t).

See [3], [2], [4].

Another useful measure of search efficiency is the expected hitting time E to the set

S∗. The expected hitting time measure is given in terms of meaningful units, namely the

number of iterations that should be required to reach the goal basin thereby turning the

problem into a deterministic excursion to the global set. This translates into an expected

running time needed by the algorithm. For a search method amendable to Markov Chain

analysis, the expected hitting time E is given by

E ≈ 1

s

1

1 − λ
(1)

in terms of two scalar parameters, retention λ, and acceleration s, see [5]. Retention is the

Perron-Frobenius eigenvalue of the goal basin deleted transition matrix – denoted by P̂

– and s is the dot product of the goal basin deleted starting/restarting distribution with

the normalized Perron-Frobenius right eigenvector. Conveniently, some convergence rate

assertions can be reworked into expected hitting times. For example, if the convergence

rate is geometric, then the corresponding expected hitting time is finite (and computable

from the rate).

But if the convergence assertion is only asymptotic, as in Hajek’s Theorem, then it is

possible for the expected hitting time to be infinite [5].

The use of expected hitting time has the additional benefit in that it can help in

deciding issue (1). If the run time has exceeded the expected hitting time, one can assert

a probability that the current best is the global best, in this case with probability .63, see

§3.

I2R2

In this work we will examine the search method which combines iterated improvement with

random restart, referred to as I2R2. In this method a strategy is furnished for attempting

to improve any given solution. Such a strategy, also known as a local improvement or

greedy algorithm, is usually problem specific and its design may involve the specialized

insight of an expert in the problem domain. The prototype for I2R2 is the optimization

of a differentiable objective defined on an open subset of Euclidean space. In this case an

obvious improvement strategy is gradient descent.

Given an improvement strategy, it remains to provide it with a starting point. The

simplest and most universal method for this is to select starting points uniformly at random

from the domain.
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The I2R2 approach to global optimization is not new. What is essentially the same is

called multi-start in [6].

I2R2, like many global optimization methods, is a Markov chain over Ω and so has

an associated transition probability matrix P . We will see that P has a very simple form,

so simple in fact that the convergence rate and expected hitting time can be calculated

directly. This stems partly from the fact that in I2R2, stochasticity only arises in the

restart step, which we will always take to the uniformly at random. Therefore I2R2 is

a homogeneous Markov chain. Convergence is geometric and expected hitting times are

always finite in this case. It also stems from the fact that, between restarts, the fate of the

process is completely determined by the start/restart choice, x0. Consequently a central

role in the theory is played by the probability θ that the restart is in the goal basin.

In Section 2 we derive the goal deleted transition matrix for I2R2 and exactly calculate

its principle eigenvalue, λ, along with the normalized left and right eigenvectors. It is shown

that η = 1/λ is the sole positive root of a polynomial

f(x) = p0x + p1x
2 + . . . + pn−1x

n + pnxn+1 − 1. (2)

which is simply and naturally related to the improvement algorithm. The coefficient pk of

this polynomial is the probability of restarting k improvement steps from a local minimum.

Not only is retention determined by f , so are s, E and the important parameter θ, the

size of the goal basin. It is shown that acceleration s is strictly greater than 1 thereby

endowing I2R2 with excellent parallelization properties, see [5].

In Section 3 we show that errors in computing the root η of (2) are many times less

than errors which may be in the coefficients themselves. Contrary to intuition, our results

indicate the coefficients play an equal role in contributing to the root error see Fig. 1 and

eqn’s (10) and (15). This opens the possibility of estimating η, and hence also s and E,

dynamically. If the search algorithm keeps track of the number of steps taken to reach local

minimums during the course of the search, then estimates of the polynomial coefficients

can be made. The resulting error in η decays according to R−1/2 where R is the number

of restarts. Specifically the variance of the error is given by

var(∆η) =
(f(η2)/f ′(η))

R
≈ (θ/β)

R

where θ is the goal basin success probability as above and β is the expected number of

iterations between restarts.

Unfortunately the parameter θ can not itself be obtained dynamically but must be

estimated a priori. This is not unlike Hajek’s parameter d [2], Azencott’s parameter α

[7] or Boender and Rinooy Kan’s parameter w [6]. The balance of the paper is devoted

to this problem for the Traveling Salesman Problem using 2-change as the improvement

algorithm.
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In Section 4 we show that swapping k links of a salesman’s tour can be affected by

no more than k 2-changes, hence it makes sense to concentrate on 2-change. In general,

a 2-change locally minimal tour has no self-intersections. When the cities are confined to

the hull of a convex set, then the number of self-intersections is an upper bound for the

descent path using only special kinds of 2-changes. For an N city problem, this number

in turn is bounded by (N − 3)N/2. Further, in the convex case, θ = 1 meaning that every

tour improves to the globally optimal tour.

With a view to revealing how θ behaves under different instances of the same problem

(for example the TSP with approximately the same values of N), we obtain empirical

results when the cities are randomly selected in the unit square. Generally both θ and its

variance decrease as N increases, see Fig. 5. Most remarkably, for the cases we looked at

(N up to 35), the distribution of the number of descent steps is quite invariant both over

randomly generated problems and database problems, see Fig. 12. This indicates that a

good estimate of θ is available from historical experience.

In this section we also investigate adding cities to a TSP. We show that every adjacent

pair of cities, A and B, along an optimal tour has an associated “maintenance” region into

which a new city can be added with the result that the new optimal tour is merely a detour

of (A,B). Surprisingly, θ is not necessarily stable under this process.

However, in the last Section we apply to foregoing ideas to a database TSP, Bays29.

We show it is possible to judiciously delete cities one by one accompanied by only a small

change in θ, see Fig. 13 and Table 2.

§2 Iterated Improvement + Random Restart

We envision a process combining a deterministic downhill operator g acting on points of

the solution space and a uniform random selection operator U . The process starts with

an invocation of U resulting in a randomly selected starting point x0. This is followed by

repeated invocations of g until a local minimizer is reached, this is the descent sequence

starting from x0.

Definition 1. The point x ∈ Ω is a local minimizer of f if for every neighbor y of x,

f(y) ≥ f(x). Then f(x) is a local minimum.

No neighbor of a local minimizer has a strictly improved objective. In general flat spots

in the domain are a problem; under the definition above, a point within a flat spot might

have no neighbors.

Upon reaching a local minimizer, the process is restarted with another invocation

of U . Thus the domain is partitioned into basins Bi, i = 0, 1, . . . as determined by the

equivalence relation x ≡ y if and only if gk(x) = gj(y) for some k, j. The local minimizer
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or settling point b of basin B is given as the limit limk→∞ gk(x) where x is any point of B;

of course, since the domain is finite, this sequence is eventually constant.

Graph theoretically, a basin is organized as a tree with the settling point being the root

of the tree. Different basins are connected only by the restart process, and so, exclusive of

restart, I2R2 enforces a topology on the domain whose graph is a forest of trees.

Denote by ℓ the number of non-goal basins for the problem. Let B0 refer to the goal

basin. We take the depth of a tree to be its maximum path length. Denote by d the

maximum tree depth over the non-goal basins.

By indexing the points of Ω according to basins, and starting with the goal basin, the

|Ω| × |Ω| transition matrix for such a process assumes the following block form

P =







B0 0 . . . 0
Q B1 . . . Q
...

...
. . .

...
Q Q . . . Bℓ







,

To conserve notation, we also use Bi to denote the sub-matrix corresponding to basin Bi.

Within a basin we index points according to increasing path length from the settling point.

Then each sub-matrix Bi has the form

Bi =









p p p . . . p
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 . . . 1 0









,

with p = 1/|Ω|, the uniform restarting probabilities. The 1’s in this matrix are in the lower

triangular part but not necessarily on the sub-diagonal. The blocks designated by Q are

generic (of appropriate size) for the form

Q =







p p . . . p
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0







.

Definition 2. By the expected hitting time E, we mean the expected number of iterations

t (improvements and starts/restarts) until the process Xt first achieves a point in the basin

B0 containing a global minimizer, the goal basin.

We now calculate E, see eqn (1).

Solving for λ and s, the Fundamental Polynomial

The deleted transition matrix P̂ is P with the rows and columns corresponding to B0

deleted. Before computing this, we first simplify P by considering an equivalent process.
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In the forest of trees model, it is clear that all states which are a given number of steps

from a settling point are equivalent as far as the algorithm is concerned. Let rj(i) be the

number of vertices j steps from the local minimizer of basin i, 0 ≤ j ≤ depth(Bi). Then

put rj =
∑ℓ

i=1 rj(i) with the sum being taken over the non-goal basins, this for 0 ≤ j ≤ d.

Thus rj denotes the total number of vertices which are j steps from a local, non-global,

minimizer. In particular, r0 = ℓ is the number of local minimizers.

Therefore the forest of trees model, in which each vertex counts 1, is equivalent to a

single, linear tree in which the vertex j edges from a local minimizer counts equal to rj .

Under this equivalency, the P̂ matrix is replaced by

P ′ =











p0 p1 p2 . . . pd−1 pd

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0











. (3)

in which

pj = rj/|Ω|, for 0 ≤ j ≤ d. (4)

With respect to P ′, the 1’s are in fact on the subdiagonal and consequently P ′ has the

form of a companion matrix. Its characteristic polynomial therefore is

−λd+1 + p0λ
d + p1λ

d−1 + . . . + pd−1λ + pd.

Definition 3. Upon setting x = 1/λ in the characteristic polynomial for the goal deleted

transition matrix, we get a polynomial which we will refer to as the fundamental polynomial

f(x) = p0x + p1x
2 + . . . + pd−1x

d + pdx
d+1 − 1. (5)

Notice that the degree of the fundamental polynomial is the depth of the deepest basin plus

1 or, equivalently, equal to the number of vertices on the longest path to a local minimizer.

Theorem 1. All non-zero eigenvalues of P̂ are eigenvalues of P ′, more exactly

detP ′ = λkdetP̂

where k is the number of merged nodes. Therefore, the reciprocal of every eigenvalue of

P ′ is a root of (5), and conversely, the reciprocal of every root of (5) is an eigenvalue of

P ′.

Proof. We show that two nodes may be merged. Since the complete merging of nodes can

be achieved by successively merging two at a time, this will prove the theorem. Hence
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suppose nodes xs and xt lead to xm. Then both rows s and t of P̂ have the form (δm) =

( 0 0 . . . 0 1 0 . . . 0 ) with the 1 in the mth position and 0’s elsewhere. Under

the equivalence, assume that node t is merged with node s whose new chance of being

selected for restart is therefore the sum µs + µt. Row s of P ′ will be (δm) while column s

of P ′ will be the sum of columns s and t of P̂ , namely µs + µt, for rows corresponding to

local minima and 0 for the other rows.

To simplify, we may re-index both matrices. For P̂ write xs first and xt next followed

by the other nodes in their same order. Then P̂ − λI will be









−λ 0 . . . 0 1 0 . . . 0
0 −λ . . . 0 1 0 . . . 0

p31 p32 . . . p3,m−1 p3m p3,m+1 . . . p3d

...
...

. . .
...

...
...

. . .
...

pd1 pd2 . . . pd,m−1 pdm pd,m+1 . . . pdd − λ









To proceed, expand det(P̂ − λI) by the first row in minors, then expand each sub-

determinant in the same way. Upon factoring −λ in common to all members and adding

the last two determinants, we get

(−λ)det






p33 − λ . . . p3d
...

. . .
...

pd3 . . . pdd − λ




+

(−1)mdet






p31 + p32 p33 − λ . . . p3,m−1 p3,m+1 . . . p3d

...
...

. . .
...

...
. . .

...
pd1 + pd2 pd3 . . . pd,m−1 pd,m+1 . . . pdd − λ




 .

But this final result is exactly the expansion of det(P ′ − λI) for the reduced matrix

P ′ proving the theorem. In reducing the degree of the characteristic polynomial by one,

only the zero root −λ = 0 has been lost; it occurred in the factor step above.

For the record we state some obvious facts.

Fact. All coefficients pj , 0 ≤ j ≤ d of the fundamental polynomial are strictly positive.

This is because, if there is a point j steps from a local minimum, there must also be a

point j − 1 steps away as well.

Let θ denote the probability of a start or restart in the goal basin.

Fact.

θ + p0 + p1 + . . . + pd = 1. (6)

This merely expresses that a restart must select some point in Ω.
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In light of this result, evaluating the fundamental polynomial at x = 1 yields the

following.

Corollary 1. f(1) = −θ.

Proposition 1. The fundamental polynomial f has a unique greater than 1 root.

Proof.

In fact the derivative f ′(x) of f has all positive coefficients and so is itself positive for

x ≥ 0. Therefore f increases for x ≥ 0 unboundedly. From the fact that f(1) = −θ the

conclusion follows.

Definition 4. Let η be the unique greater than 1 root of the fundamental polynomial.

Then 1/η is the unique maximal root of the characteristic polynomial of P̂ and hence η is

the reciprocal of the retention λ.

To calculate the acceleration s, we first find the left and right eigenvectors of λ = 1/η.

The right Perron-Frobenius eigenvector, χ, of P̂ is easily calculated. From (3) we get the

recursion equations

χk = λχk+1 k = 0, . . . , d − 1.

And so each is given in terms of χ0,

χk = ηkχ0, k = 1, . . . , d.

Similarly, we get recursion equations for the components of the left eigenvector ω in terms

of ω0,

ωk = ω0(ηpk + η2pk+1 + . . . + ηd+1−kpd).

We may normalize ω so as to be a probability vector,
∑

ωi = 1, from which it follows that

ω0 =
η − 1

ηθ
.

We normalize χ to have unit inner product with ω,
∑

ωiχi = 1, from which it follows that

χ0 =
1

ω0ηf ′(η)
=

θ

(η − 1)f ′(η)
.

But s = 1/(χ·α̂0) where α̂0 is the non-goal partition vector of the starting distribution,

α̂0 = ( p0 p1 . . . pd ) .

Substituting from above, we get

s =
η(η − 1)f ′(η)

θ
. (7)
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Theorem 2. For I2R2 s > η > 1.

Proof. The average slope of the line between (1,−θ) and (η, 0) is less than the slope of f

at η because f ′ is increasing, therefore f ′(η) > θ/(η − 1). Hence, since η > 1,

s = η
(η − 1)f ′(η)

θ
> η > 1.

Remark 1. Since acceleration exceeds 1, I2R2 is superlinearly sped-up under independent,

identical processes parallelization, see [5].

Goal attainment probabilities

Restarting in a goal basin can be regarded as a Bernoulli trial with success probability θ.

Accordingly, the expected number of starts/restarts to find such a basin is 1/θ and the

probability of not finding a goal basin after k starts/restarts is (1− θ)k. Taking k to be a

fraction m of the expectation we have

Pr(goal basin has not been found after m
θ restarts) = (1 − θ)

m
θ

≈ e−m as θ → 0.

Therefore the probability of not having found a goal basin within the expected number of

starts/restarts, 1/θ, is e−1 = 37%. Alternatively, to find the goal basin with 50% chance

requires m = 69% of the expected restarts.

§3 Run time estimation of retention, acceleration and hitting time

Consider again the coefficient pj of the term xj+1 of the fundamental polynomial, see

eqn (4). Since pj is the ratio of the number of points j steps from a local minimizer divided

by the number of points in the space, we see it is exactly the probability of starting or

restarting j steps from a local minimizer. Thus the linear coefficient is the probability of

restarting on a local minimum, the quadratic coefficient is the probability of restarting one

downhill step from a local minimum and so on.

As a result, we consider the possibility of estimating the fundamental polynomial

during an execution of the algorithm, that is a run. Toward this end, for each j =

0, 1, . . . , d, we can maintain a count of the number of restarts, rj(t), requiring j steps to

reach a local minimizer up to the tth iteration of the run as well as the total number of

restarts, R(t), altogether. We shorten these to rj and R if t is understood.

Since the rj(t) might well include multiple counts, and since, in any case, |Ω| may not

be available or be so large that a significant fraction of this size would be needed to obtain
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reasonable coefficient estimates, eqn (4) is impractical to use directly. On the other hand,

the ratio rj(t)/R(t) does estimate the associated conditional probability conditioned on the

restart being among the non-goal basins. We define qj to be the conditional probability

that a restart will require j steps to reach a local minimum given the restart is in a non-goal

basin. The relationship between pj and qj is given by

pj = qj(1 − θ) = lim
t→∞

rj(t)

R(t)
(1 − θ). (8)

The quotient on the right hand side is the empirical estimate of the conditional probability

of pj conditioned on starting in some non-goal basin and the factor (1 − θ) is that very

probability. Summing the estimated coefficients gives

∑

j

rj(t)

R(t)
(1 − θ) = 1 − θ

since the rj(t) sum to R(t). Thus we obtain the required condition of eqn (6).

As explained in the Introduction, θ must be estimated by independent means. Here we

obtain results about the convergence rates and statistical properties of the convergence of

the coefficient estimates and, more importantly, of η. As we have seen, from the knowledge

of this root, estimates of λ, s and E follow.

Connection between root error and coefficient error.

In this section we show that the error ∆η in the root η of the fundamental polynomial is

much less than the errors ∆pj in its coefficients. Toward that end, regard the fundamental

polynomial as a function of its coefficients and η as well as x, thus

0 = f(η, p0, p1, . . . , pd).

Differentiating

0 =
∂f

∂η
∆η +

∂f

∂p0
∆p0 + . . . +

∂f

∂pd
∆pd

and from this we derive

∆η =
−1

f ′(η)

[
η∆p0 + . . . + ηd+1∆pd

]
. (9)

Let j′ be the subset of indices among 0, 1, . . . , d for which ∆pj ≥ 0 and j′′ those for

which ∆pj < 0. Let σ =
∑

j′ ∆pj′ . Since the algebraic sum of the errors will be zero,
∑

j ∆pj = 0, then also

σ = −
∑

j′′

∆pj′′ =
∑

j′′

|∆pj′′ |

=
1

2

d∑

j=0

|∆pj |.
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The latter is the ℓ1-norm of the vector of the ∆p’s. Then

|∆η| =
1

f ′(η)

∣
∣

d∑

j=0

ηj+1∆pj

∣
∣

=
1

f ′(η)

∣
∣

d∑

j′

ηj′+1∆pj′ −
∑

j′′

ηj′′+1|∆pj′′ |
∣
∣

<
1

f ′(η)

[
σ max

0≤j≤d
ηj+1 − σ min

0≤j≤d
ηj+1

]

=
1

f ′(η)
σ
[
ηd+1 − η

]

=
η(ηd − 1)

2f ′(η)

d∑

j=0

|∆pj |.

We have proved the following theorem.

Theorem 3.
|∆η|

∑d
i=0 |∆pj|

<
η(ηd − 1)

2f ′(η)
. (10)

The effect of θ on η

The number of iterations between restarts equals the number of downhill steps plus the

restart itself, and therefore is at least 1, and so we see that

h(x) = q0x + q1x
2 + . . . + qdx

d+1.

is the probability generating function for the number of iterations between restarts con-

ditioned on the restart occurring among the non-goal basins. Let β denote the expected

number of iterations between restarts. Then β is the derivative

β = h′(1) = q0 + 2q1 + . . . + (d + 1)qd. (11)

Since the expected number of iterations to find the goal basin, E, is the expected

number of restarts to find the goal basin, 1/θ, times the expected number of iterations

between restarts, we have

E =
β

θ
. (12)

Unless each non-goal state is its own basin, it must necessarily be that β > 1 and this we

will assume throughout.

12



Recall that we do not directly estimate pj but instead we estimate qj . Thus we see

that

∆pj = ∆qj(1 − θ) − qj∆θ

so strictly speaking we need some estimate on the error in our estimation of θ. However,

this is very difficult to ascertain. Nevertheless, it is important to try to understand the

effect of θ on the root η. In terms of h, f is given by f(x) = (1− θ)h(x)− 1 and so to find

η we are solving h(x) = 1/(1 − θ).

Applying the generalized Arithmetic-Geometric Mean inequality to eqn (11) we have

xβ = (x)q0(x2)q1(x3)q2 · · · (xd+1)qd

≤ q0x + q1x
2 + q2x

3 + · · ·+ qdx
d+1

(13)

for x > 0. Thus, the root η of f(x) is less than or equal to the root η̂ of xβ = 1/(1 − θ).

This proves the following

Theorem 4.

1 ≤ η ≤ η̂ =

(
1

1 − θ

)1/β

. (14)

In practice β >> 1 usually, see Fig. 12.

From a Taylor Series expansion we see that

η̂ = (1 + θ + θ2 + · · ·)1/β = 1 + θ/β + O(θ2)

so that for small θ we have η̂ ≈ 1+θ/β. Similarly since h′(1) = β, by the Inverse Function

Theorem,

η = h−1

(
1

1 − θ

)

= h−1(1) +
(
h−1

)′
(1)

(
1

1 − θ
− 1

)

+ . . .

= 1 +
1

β

(
θ

1 − θ

)

+ . . .

and so also

η = 1 + θ/β + O(θ2). (15)

For small values of θ we know η̂ is a very good approximation to η. Using this, we see that

for small values of θ we have λ ≈ 1 − θ/β. Notice that by eqn (12) we have λ ≈ 1 − 1/E

as well.

Remark 2. The expression λ ≈ 1 − θ/β nicely illustrates the effects of both θ and

the pj ’s on λ (the pj ’s through β). If β increases, then the average number of downhill

steps increases so it is more likely the process will be “retained” in the non-goal states for

additional iterations of the Markov Chain. Similarly, if θ decreases, then upon restart it

is less likely to find the goal basin so more likely to remain in the non-goal states. Similar

reasoning applies if β decreases or θ increases.
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We can also use this estimate to obtain another estimate of the error ratio from

Theorem 3. For this we assume that β, the average number of downhill steps taken in

non-goal basins, is held constant and we only keep terms first order in θ.

From Theorem 3 we have the following.

Theorem 5. Assuming that θ is small and β ≈ d/2 is constant then

|∆η|
∑d

i=0 |∆pj |
<

η(ηd − 1)

2f ′(η)
<

θ

β

to first order in θ.

Proof. Since η ≈ 1+θ/β we see that ηd ≈ (1+θ/β)d ≈ 1+d(θ/β) so that η(ηn−1) ≈ d(θ/β)

(to first order). Using the fact that f ′(η) > f ′(1) ≈ d/2, we obtain the desired result.

In practice θ is very small and β is large, so this ratio is quite good, see Fig. 11. In

fact, if β ≈ d/2, then this says that we should expect

|∆η| < 2θ average (|∆pj |) (16)

which gives us an estimate of the size of ∆η in terms of the average size of |∆pj |. This is

very nice, since it tells us that usually the error in the root is much smaller than the errors

in any of the coefficients.

In Table 1 we present the results of an empirical study of the error ratio. The

first two columns are for θ = 0.1, the third and fourth for θ = 0.01 and the fifth and

sixth for θ = 0.001. The number reported is 1,000 times the actual ratio (to conserve

space). Each pair of columns presents the (maximum) simulated error ratio and the error

bound predicted by Theorem 5. For each simulation we obtained 10, 000 samples from

the appropriate distribution. The table shows that the simulated (“actual”) ratio is never

worse than the predicted ratio. That is, in actuality the ratio of the errors is much better

than the theory says (as this is based on a first order approximation only).

Table 1 Maximum simulated error ratio vs predicted for various θ

θ = 0.1 θ = 0.1 θ = 0.01 θ = 0.01 θ = 0.001 θ = 0.001
Sim Pred Sim Pred Sim Pred Sim Pred Sim Pred Sim Pred

5.77 11.1 1.45 7.06 0.67 1.25 0.14 0.53 0.02 0.05 0.01 0.05
1.17 7.74 1.33 6.02 0.55 1.14 0.17 0.64 0.05 0.17 0.01 0.06
1.93 5.70 3.19 8.06 0.15 0.59 0.25 0.96 0.02 0.07 0.01 0.06
3.12 10.4 3.30 9.64 0.47 1.31 0.09 0.48 0.03 0.07 0.06 0.17
4.96 14.9 4.61 10.7 0.81 1.77 1.54 1.99 0.05 0.14 0.01 0.05
2.25 6.80 2.66 8.51 0.11 0.55 0.18 0.78 0.02 0.09 0.02 0.09
4.03 9.91 2.27 5.97 0.11 0.62 0.15 0.58 0.02 0.07 0.08 0.15
4.67 12.5 2.64 9.65 0.21 0.64 0.23 0.71 0.02 0.08 0.01 0.05
1.76 5.10 2.36 5.97 0.15 0.66 0.23 1.02 0.07 0.18 0.02 0.06
2.54 9.20 3.66 13.1 0.15 0.55 0.37 1.10 0.05 0.13 0.03 0.07
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Run time estimation

During the course of a run the coefficient estimates are random variables. We will continue

to assume that conditioning with respect to the non-goal basins is compensated for, for

example by utilizing the factor 1 − θ or by noting a hit on the goal basin and continuing

the run. Let rj , j = 0, 1, . . . , d, denote the number of restarts at depth j and let R be the

number of starts/restarts altogether. The rj are multinomially distributed with parameters

pj , j = 0, 1, . . . , d and R. We have the following for the variance of the error in η.

Theorem 6. The variance of ∆η decreases in inverse proportion to the number of

restarts, R−1, and is given by

var(∆η) =
1

R

f(η2)

f ′2(η)

≈ (θ/β)

R
.

(17)

Proof. From first principles

var(rj) = Rpj(1 − pj) and E(rirj) = R(R − 1)pipj ,

and the error variables obey

var(
rj

R
− pj) =

1

R
pj(1 − pj) and E

[

(
ri

R
− pi)(

rj

R
− pj)

]

= − 1

R
pipj .

Recall eqn (9),

∆η =
η

f ′(η)

(r0

R
− p0

)

+ . . . +
ηd+1

f ′(η)

(rd

R
− pd

)

.

Put ξj = (
rj

R − pj) and aj = ηj+1

f ′(η) . Since the mean vanishes, µ(∆η) = 0, from the above

we have
var(∆η) = E

[
(a0ξ0 + . . . + adξd)

2
]

=
a2
0

R
p0(1 − p0) − 2

a0a1

R
p0p1 − . . .− 2

a0ad

R
p0pd+

+
a2
1

R
p1(1 − p1) + . . . +

a2
d

R
pd(1 − pd)

=
1

R

(
a2
0p0 + . . . + a2

dpd

)
− 1

R
(a0p0 + . . . + adpd)

2

Replacing the definitions of the aj in the last term and noting that the second term is just

1/Rf ′2(η), we have

1

R

1

f ′2(η)

[

(η)
2
p0 +

(
η2

)2
p1 + . . . +

(
ηd+1

)2
pd − 1

]

=
1

R

f(η2)

f ′2(η)
.
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This proves the equality of eq. (17). Using eq. (15), we see that f(η2) ≈ f(η)+f ′(η)η(η−1)

from which we obtain the first order approximation for small θ.

Equation (17) is illustrated in Fig. 1. The upper figure tracks the estimate, r7(t)/R(t)

of one of the polynomial coefficients, while the lower figure tracks the estimate of η.
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Two Sigma Error Band for Coefficient p7

Fig. 1(a) Typical coefficient error and 95% confidence band.
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Two Sigma Error Band for η

Fig. 1(b), Typical empirical error for η and 95% confidence band.
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§4 I2R2 Parameters for the TSP

The k-change algorithm was used effectively along with random restart for the travel-

ing salesman problem (TSP) by Lin and Kernigan [8]. A tour t is a feasible subset of the

set S of all edges joining pairs of cities of the problem. To be feasible, the edges must form

a Hamiltonian cycle. Then a k-change is the exchange of k elements of t with a disjoint

set of k elements of S forming a new tour t′.

In their paper popularizing simulated annealing, Kirkpatrick, Gelatt, and Vecchi re-

strict to 2-change operations only. Use permutations of the set {1, 2, . . . , N} to describe

tours and consider the N city tour

t =



i1, . . . , ik, ik+1, . . . , im
︸ ︷︷ ︸

backside

, im+1, . . . , iN , i1



 .

The 2-change which exchanges links (ik, ik+1) and (im, im+1) in favor of (ik, im) and

(ik+1, im+1) produces the modified tour t′

i1, . . . , ik, im, im−1, . . . , ik+1, im+1, . . . , iN , i1.

This is illustrated in Fig. 2. We indicate the frontside sub-tour as the dotted path from

im+1 through i1 and onto ik. The links to be broken (ik, ik+1) and (im, im+1) are shown

as solid directed line segments. The tour is closed by the backside sub-tour from ik+1 to

im and is also illustrated as a dotted line segment. Note that the tails of both the old

and new tours meet at node ik, which we indicate with the notation (tt), and the heads of

the old and new meet at im+1 indicated by (hh). One can think of link (ik, ik+1) rotating

around ik across the backside tour to become the link (ik, im) and the same for (im, im+1)

becoming (ik+1, im+1).

•
•

•
•

ik(tt)

im
ik+1

im+1(hh)

frontside sub-tour

backside sub-tour

Fig. 2, butterfly 2-change

Upon the choice of initial link to be removed, (ik, ik+1), of which there are N possibil-

ities, two of the 4 nodes of a 2-change are decided. The replacement link to be constructed

must proceed from ik but its other end, im, is arbitrary except that nodes ik, ik+1 and
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ik−1 are ineligible, thus leaving N − 3 choices. (The latter choice creates a ik−1, ik loop.)

From im there are two links, but only the one joining the backside sub-tour is eligible in

order to avoid a short circuit. In total there are

N(N − 3)

2
(18)

2-change modifications to t if forward and reverse tours are regarded as identical. Note

that one of the replacement edges joins the tails of the original edges and the other joins

the heads. The replacement edges are themselves directed and, together with the original

links, create two special nodes, the tt node from which the tails of the links issue and the

hh node to which the links are directed.

A side effect of the 2-change is to reverse the backside sub-tour. Hence a 2-change may

be referred to as a partial path reversal or PPR. In this case, we say tour t′ is a neighbor

of the tour t. Since a second reversal of the same sub-tour brings back t, we see that t is

a neighbor of t′ as well. From eq. (18), each tour has N(N − 3)/2 neighbors.

Using the permutation notation for tours and partial path reversal representation for

2-change, it is easy to see that by judicious choice of a sequence of partial path reversals,

any tour may be converted to any other. But more is true, we now show that any k-change

can be realized as a sequence of at most k PPR’s.

Let a k-change be given from the identity permutation 1, 2, . . . , N ; we seek to restore

the identity using PPR’s. In writing the permutation form of a tour, without loss of

generality, we may start with city 1.

In general the modified tour will consist of segments or subsequences of cities already

in correct identity order and isolated cities. As a segment is incorporated into a tour, we

identify the segment with either the representation TH or HT . The former is used if the

segment is from low to high order, for example the segment 2, 3, ... would be designated

TH. If the segment is traversed in high to low order, then we use HT . In this scheme, city

1 counts as the high end. For example the 3 segment tour 1, 5, 4, 2, 3, 6, 1 would be written

H|HT |TH|T where we have used | to denote the gaps between segments. It is clear that

for segments two or more nodes in length, a gap of the form H|H or T |T cannot denote a

link of the identity tour.

A PPR which keeps segments intact will take place in the gaps. In the 3 segment tour

above, the PPR with backside 5 to 3 produces the tour 1, 3, 2, 4, 5, 6, 1 whose parity is the

same as the original because it reversed the HT |TH partial path.

Theorem 7. Any k-change can be effected as a sequence of at most k 2-changes.

Proof. We proceed by induction. Obviously the statement is correct for k = 2. It is

worthwhile to note that a 2-change cannot have an isolated city, that is a length 1 segment,

because a 2-change can not change both links incident on a city. Further, in the parity
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representation of its segments, it must have both an H|H gap and a T |T gap. The PPR

is performed between these gaps and brings two desired edges into place at once.

Now assume k > 2. If the given tour has an isolated city then clearly the PPR with it

as the terminus of the backside subtour, bringing it into correct identity position, occurs

without breaking any existing correct links. Hence the number of incorrect links is reduced

by 1 and induction may proceed.

Next assume t consists of segments only and has an H|H or a T |T gap. Then there

must by necessity be one of the other type as well; in fact they must occur in balancing

pairs. For if not, consider the partition of the multi-set of the H’s and T ’s defined by

the gaps themselves. The gaps are directed edges and so partitions this set according to

antecedents and succedents of the gaps. If there is an H|H pair but no T |T pair, then

there must be 2 more H labels than T labels which is impossible.

Now partition the segments according their orientation, let F be those that are of TH

type and let R be those of HT type. Since a tour must reach all cities, there are always

at least two links of the identity tour with one city in F and the other in R. Further,

since in the given tour, the segments containing these nodes are oppositely oriented, there

must necessarily be a PPR which joins them. Performing this PPR reduces the number of

incorrect links by at least one and induction may proceed in this case as well.

Finally consider the mono-mode case in which the pattern is

(1)H|TH| . . . |TH|T,

(we use (1)H to indicate the first city is 1, which is an H) and we may assume without

loss of generality that the next city is not 2. A PPR based on gaps cannot make a correct

link in this case and we must break some segment to proceed. We do this by a PPR which

breaks 23 and makes 12, thereby not reducing the number of incorrect links. But this PPR

does create an H|H gap and a matching T |T gap; the pattern will be

(12)H|HT | . . . |HT |(3)TH| . . . |TH|T. (19)

An inspection of (19) shows that the F and R partition as defined above are in fact

the subtours from just after 2 up to 3 for R and the remainder for F . As above there must

be at least two identity links to be made between them, and moreover, the PPR will not

destroy the H|H, T |T pattern, only making the 23 link will do that. Continue such PPR’s

until only 2 incorrect links remain. At that point, a single PPR will reduce the number of

incorrect links to zero. Since there will be at least one out of place reduction until the last

step, which brings about a reduction of two, we have achieved a reduction to the identity

tour in k PPR’s as required.

Remark. This result is sharp as the 3-change 1, 5, 6, 7, 2, 3, 4, 8, 9 = 0 can not be converted

to the identity using 2 2-changes.
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Definition 5. A steepest downhill step from tour t is any neighbor t′ of t whose tour

length, or weight, wt(t′) is minimum. Since we assume the cities of a problem lie in

Euclidean space, the probability that two distinct tours have the same length is zero.

Therefore we will assume that the steepest downhill step is uniquely determined. The

steepest descent starting from t is the sequence of steepest downhill steps t = t0, t1, . . .,

tm, the descent sequence, such that no neighbor of tm has strictly smaller tour length. In

this case tm is a local minimum.

Definition 6. A tour which cannot be improved by a 2-change operation is called a

2-opt tour.

In Fig. 3 we show a typical descent sequence for the Bays15 problem (cf. the last

section “Application to the Bays29 problem”) and give its “break” and “make” links.
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Order of Magnitude calculations for PPR

The k-change algorithm was studied extensively by Chandra, Karloff, and Tovey [9] who

obtained two-sided performance ratio order of magnitude estimates. Below we summarize

their results as specialized to 2-change and to Euclidean TSP of N cities in the plane. Let

t denote a 2-change tour and tg a globally optimal tour.

Theorem 8. (CKT)
wt(t)

wt(tg)
≤ 4

√
N. (i)

For infinitely many values of N there is an n-city TSP and a 2-change tour t for which

wt(t)

wt(tg)
≥ 1

4

√
N. (ii)

There is a constant c such that for infinitely many values of N there is an N -city TSP and

a 2-change tour t for which
wt(t)

wt(tg)
≥ c

log N

log log N
. (iii)

Let IN denote an instance of an N -city TSP in which the cities are selected i.i.d. uniform

randomly in the unit square. For a constant C, the expected number of 2-changes made

by the 2-change algorithm on IN is at most

(

8C
√

N
)

N10 log2 N. (iv)

Assertion (iv) is derived from the following result due to Kern [10]

Theorem 9. (Kern) There is a constant c such that the probability that 2-change on IN

does more than N16 iterations is at most c/N .

Rearranging (i) to the form

wt(tg) ≥
1

4
√

N
wt(t)

allows the run time calculation of a lower bound for the globally optimal tour. Assertions

(ii) and (iii) allow for estimates of an upper bound for the globally optimal tour, for

example

wt(tg) ≤
4√
N

wt(t).

Assertion (iv) provides a very coarse order of magnitude estimate for the depth of a 2-

change iteration and hence of the degree of the fundamental polynomial.
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Unfortunately these results do not speak to the nature of the basins due to the 2-

change topology. However in the next two figures we present some empirical results about

this for the case that the cities are chosen uniformly at random in the square.

In Fig. 4 we show how the mean and distribution of the number of basins varies with

the number of cities for the IN problem.

In Fig. 5 we present some statistical results for θ versus the number of cities for the

IN problem.
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Cities lying on a convex polygon

It will be helpful to make some observations about the geometry under which PPR improves

the tour. Besides the geometrical relationship between the new and old links depicted in

Fig. 2, there are, conceptually, two other possibilities as shown in Fig. 6a,b,c. Descriptively,

the 3 possible geometrical arrangements of the cities and links are: (1) the original links

intersect as in Fig. 2, (2) the replacement links intersect as in Fig. 6a, and (3) neither of

these, for example, Fig. 6b or 6c. We refer to Case 1, (i.e. Fig. 2) as the butterfly case.

•
•

•
•

ik

ik+1

im

im+1 � � �� 1
23

4 �
��

� 12
34

(a) new links cross (b) external “links” cross (c) another configuration

Fig. 6

Theorem 10. If the 2-change edges of the original tour intersect, the butterfly case, then

the modified tour is strictly shorter. Similarly, if the replacement edges intersect, case 6a,

then the original tour is shorter.

Proof. If the edges of the original tour intersect, then, together with the replacement

edges, two triangles are formed. The original edges form two sides of each triangle and the

replacement edges form the third side of each, see Fig. 2. The result now follows by the

triangle inequality.

Corollary 2. A 2-opt tour has no intersecting edges.

Theorem 11. If the cities lie on the hull of a closed convex set, then the globally optimal

tour is any parameterization of the hull and every tour improves under PPR to the globally

optimal tour.

Proof. Assume not and let tour t improve to a local minimum different from 1, 2, . . . , N, 1.

We may assume without loss of generality that t is this local minimum tour. Starting with

city 1, let city i be the first not to link with city i + 1. We may assume without loss of

generality that i = 1. Then 1 links to k for k 6= 2 and k 6= N (where N labels the city at

the end of the tour linking back to 1).

By convexity and the hypothesis, the extended line 1k bisects the convex hull in such

a way that city 2 is on one side, or on, this line and city N is on the other. Hence some
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link must join a city on the 2 side, say j, with a city on the N side, say m. Again by the

convexity hypothesis, the links jm and 1k intersect. Therefore tour t cannot be locally

minimal.

Theorem 12. Given an N -city problem lying on a convex polygon, an upper bound

for the number of butterfly 2-changes required to achieve optimality is the number of

self-intersections of the tour.

Proof. From above, a tour is optimal if and only if it has no self intersections.

In the following we will use only butterfly type improvements. We note that each

butterfly 2-change reduces the number of self intersections by at least 1. This is because,

(see Fig. 2) any tour link that intersects one of the improved edges, must also intersect

at least one of the original edges. Further, any link that intersects both improved edges,

also intersects both original edges. Then since the new edges do not intersect while the

original ones do, it follows that the improvement has at least one less intersection.

Lemma 1. Given an N -city problem, an upper bound for the number of butterfly 2-

changes required to achieve optimality is (N − 3)N/2.

Proof. Note that any given edge can intersect at most N −3 other edges because it cannot

intersect itself nor the two edges incident on its end-points. Since each intersection is

counted twice the number of intersections per edge is (N − 3)/2 per edge. As the number

of edges of a tour equals the number of cities, we obtain the result.

Remark 3. Note that if N is odd, N = 2k + 1 and the cities lie on a convex polygon,

then the maximum number of intersections is achieved when each edge skips k − 1 cities.

In Fig. 7 we present some statistical results on the number of self-intersections and

the number of descent steps for cities arranged on a convex polygon versus the number of

cities.

Combining these figures we get Fig. 8.

Hyperbolas

Now imagine the cities A, C, D are fixed but X is variable. We want to know where in

the plane it is that a 2-change will replace AX + CD by AD + CX , we refer to this as

the replacement region. The complementary set is where the original links are maintained

and we refer to it as the maintenance or M -region. Evidently

replacement region = {X : |AX | + |CD| ≥ |AD| + |CX |}. (20)

Assume first that |AD| > |CD| and put R2 = |AD| − |CD|. The set of points

{X : |AX | − |CX | = R2} is a hyperbola with focii A and C. The two branches of the
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hyperbola partition the plane into 3 regions, one containing A, another containing C and

the region between the two branches. By continuity, the sense of the inequality in (20)

is constant throughout each region. Direct substitution shows that D itself lies on the

hyperbola and in fact on the branch closest to C by our assumption.

It is easy to see that X may be selected in the hyperbolic region containing C in such

a way that the edges AX and CD intersect hence this region belongs to the replacement

region. But crossing the branch of the hyperbola reverses the sense of the inequality in

(20) and therefore this is the entire replacement region. This situation is shown as the

shaded portion in Fig. 9a, the maintenance region is the unshaded part.
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In the degenerate case that D lies on the x-axis, then the maintenance region is the

entire plane except the portion of the major axis of the hyperbola from min(D, C) and to

the right.

If |CD| > |AD| then the situation is as shown in Fig. 9b; D now lies on the branch

closest to A. In general the replacement region extends from the branch containing D and

the hyperbolic regions toward the focus C.

0A
C

X

D

0A
C

X

D

Fig. 9a, |AD| > |CD| Fig. 9b, |AD| < |CD|

Adding cities to a TSP

Much light can be shed on a TSP by following a strategy of deleting cities one-by-one

arriving at a “core” subset. If done with care, this core will share properties with the

original city set. For one, PPR descent paths between the city sets at each stage will be

similar only differing in the form of “detours” to the added city. As a consequence, θ will

be approximately equal between the two.

We proceed in the opposite direction, we will investigate adding cities one-by-one to

a TSP.

Definition 7. Let CN be an N city TSP and t a tour which includes the link AB joining

adjacent cities A and B. A point in the plane X , distinct from CN , along with the links

AX + XB in place of AB will be called a detour.

Theorem 13. Let AB be a link of an optimal tour, globally or locally with respect to

2-change, for an N city TSP CN . Then there is an open region M containing the open

interval ABo such that if a new city X is placed in M , then the detour AXB is optimal,

globally or locally, for the N + 1 city TSP CN+1.

Proof. In the case of global optimality, for any tour ti of CN+1, let fi(X) denote its

length as a function of X . Then fi is continuous in X . The length, f(X), of the optimal

tour as a function of X is the minimum of the fi, therefore f is also continuous. But if X

is on ABo, then t is optimal. The conclusion follows by continuity.

For the case of local optimality, we must show that the detour solution is 2-change

optimal. Let CD be a candidate link for 2-change replacement along with AX in favor
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of CX and AD. It is assumed that CD is oriented so that A joins C externally. The

2-change will be accepted if the inequality |AX |+ |CD| > |CX |+ |AD| obtains. Since we

must also compare the link XB with CD, the modification of the above requires replacing

fi by

fCD(X) = min{|AX | + |CD| − |CX | − |AD|, |BX |+ |CD| − |CX | − |BD|}.

As before, for each link CD, fCD is continuous and negative for X on ABo. Hence for

each CD there is an open region MCD containing ABo in which fCD is negative. The

intersection of these regions over all links CD gives the required open region M . See Fig.

10.

Remark 4. The maintenance region is especially large on the side of AB away from the

city set (for a link having an away side), see Fig. 10.
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Fig. 10

Theorem 14. Let AB be a link of a locally optimal tour τ for an N city TSP CN and let

X be a point on the segment AB. Then τ ′, the τ induced detour AXB, is locally optimal

for the N + 1 city TSP, CN ∪ {X}. Further let t be a tour of CN in the basin of τ which

contains AB and whose 2-change descent preserves this link at each step. Then starting

with t′, the AXB detour of t, the 2-change descent sequence is the AXB detour of the

descent sequence for t.

Proof. That τ ′ is optimal is easy to see since by adding a city the tour length cannot

decrease. But the detour AXB solution to CN+1 has the same length as the solution τ to

CN . So it must be minimal.

For the second part, we show that the detour AXB is maintained at each step. Con-

sider a 2-change attempting to break the link (oriented) AX (or XB), and let CD be the

(oriented) companion link to be replaced. The 2-change is an improvement if

|CX | + |AD| < |AX |+ |CD|.
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Adding |XB| to both sides gives

|XB|+ |CX | + |AD| < |XB| + |AX |+ |CD| = |AB| + |CD|.

But we know that |AB|+ |CD| < |BC|+ |AD| for otherwise the links AB and CD would

be replaced by BC and AD in the N city descent. (Moreover AB remains intact under

2-change with respect to any other link C′D′ as well.) Hence

|XB|+ |CX | + |AD| < |BC| + |AD|.

This implies that |XB|+ |CX | < |BC| which is false by the triangle inequality. Hence link

AX is maintained. For the same reason, so is XB.

Corollary 3. By continuity of the 2-change improvement function f(X) as introduced

above, the result holds in some neighborhood of the segment ABo as well.

Remark 5. Remarkably, adding a city along an optimal link can have a large effect on θ

and it could go either up or down. The globally optimal tour is shown for a 9 city problem

in Fig. 11; θ = .62 for this problem. But adding city 10 near city 9 and between 9 and 4

makes for a 10 city problem with θ = .52 while adding the 10th city between cities 2 and

5 yields a problem with θ = .73.
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Fig. 11, adding cities along link 94 or 25 greatly changes θ

In Fig. 12 we illustrate the remarkable quality of PPR to produce a very characteristic

distribution for the magnitudes of the coefficients of the fundamental polynomial, and hence

the distribution for the number of steps from a local minimum, despite wide variations in

θ (and in N for that matter as well). Illustrated is the coefficient distribution for three
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different 29 city problems from I29. Since the third problem illustrated has a large θ, its

density comes in below that of the other two, but if normalized, the distributions are nearly

identical. Although we show only four examples in this figure, all coefficient distributions

we have produced are similar in that the great majority of descent paths are of intermediate

length, that is, PPR basin trees are bushy. Results sheding light on the PPR coefficient

distribution is an open problem.
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Fig. 12, 29 city distributions

§5 Application to the Bays29 Problem

The Bays29 problem is a standard problem available on the Traveling Salesman Prob-

lem database at http://softlib.rice.edu/softlib/catalog/tsplib.html. The figures below show

the application of the above principles, in reverse, to reduce the problem from 29 cities to

15. The number of tours of the original problem is 28!/2 = 1.5 × 1029 while the number

for the reduced problem is 14!/2 = 4.3 × 109. This is a 1020 magnitude reduction. The

global basin size for Bays29 is θ = 0.0032 while that for the reduction is θ = 0.025 or a 10

fold difference. Thus the technique can have considerable efficacy.

To demonstrate the technique, first the optimal tour for the full size problem must

be guessed since, in general, that will not be known. (However, once the reduced city

set is reached, the results of the last section can be applied, step by step, to build back

to the original problem as a check.) Then a city is selected for removal. In accordance

with the theorems of the last section, we seek a city lying on a detour link or in the

hyperbolic maintanence region of the remaining city set. In the Bays29 problem we chose
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city 9. Having removed a city, repeat the foregoing until there are no remaining suitable

candidates for removal. As a check on the removal, we estimated θ at each step via the

Monte Carlo method. Having worked down to 15 cities, we were then able to calculate the

optimal tour exactly and see that it was what we had arrived at.

At this point one can use θ for the reduced city set as an estimate for the original, or

better, use the trend analysis of the Monte Carlo estimates obtained during the reduction.

In Fig. 13 we show the original as well as the final city sets along along with the optimal

tours.
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Fig. 13

Our objective here has been to estimate θ, the global basin size parameter. In our

experiments we often observed that θ for the goal basin is larger than the basin size for

non-goal basins. In such an event, estimates obtained in this way are underestimates for

θ.

In Table 2 we show the results of the step by step removal of carefully chosen cities

according to the guidance of the previous sections. We indicate which city is removed at

each step and the estimated value of θ for the reduced problem.

In Fig. 12, curve “D”, we show the coefficient distribution.
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Table 2

Table 2 θ vs City Removal for Bays29

number city size number city size
cities removed θ Ω cities removed θ Ω

29 – .0032 1.6 × 1029 21 18 .0217 1.2 × 1018

28 9 .0049 5.4 × 1027 20 11 .0135 6.1 × 1016

27 26 .0053 2.0 × 1026 19 29 .0229 3.2 × 1015

26 22 .0062 7.8 × 1024 18 5 .0298 1.8 × 1014

25 14 .0061 3.1 × 1023 17 6 .0341 1.0 × 1013

24 3 .0066 1.3 × 1022 16 2 .0268 6.5 × 1011

23 12 .0072 5.6 × 1020 15 28 .0251 4.4 × 1010

22 17 .0101 2.6 × 1019
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