Annealing a Genetic Algorithm for Constrained
Optimization

F. Mendivil' 2 and R. Shonkwiler®

Abstract

This paper considers the problem of adapting a Genetic Algorithm (GA)
to constrained optimization problems, using a dynamic penalty approach
as a type of annealing to force the search to concentrate on feasible solu-
tions as the algorithm progresses. We suggest two different methods for
ensuring almost sure convergence to a globally optimal (feasible) solution.
The first of these involves modifying the GA evolution operators to yeild
a Boltzmann-type distribution on populations. The second incorporates a
dynamic penalty along with a slow annealing of acceptance probabilities.
We prove the almost sure convergence of both of these methods.

Key Words: Genetic Algorithms, Constrained Optimization, Simulated Anneal-
ing

1 Introduction

Let f be a real-valued function defined on the finite domain 2. By transfor-
mation if necessary, we may assume without loss of generality that f: Q2 — R
is strictly positive, i.e., f(z) > 0 for points x € Q. Some (strict) subset of the
points of 2 may be designated as infeasible. The purpose of this report is to
discuss Genetic Algorithm based methods for finding the global optimum of f
constrained to the feasible points of Q2. We distinguish between the function f
to be optimized and the fitness ¢ of the algorithm, which is clearly taken to be
a function of f. Our basic approach is to vary ¢ dynamically as a function of
“time” t, taken as a non-decreasing function of the iteration count of the algo-
rithm. Therefore ¢, () is a function of both z € Q and run time ¢t = 1,2,
An alterate approach taken by some authors is to vary the mutation rate (for
example, see [1]).

A Genetic Algorithm is a Markov chain defined on the set T of populations
over 2. A population i of € is a fixed sized multi-subset of 2, that is a subset
of of a given cardinaliy, say K, possibly having repeated members,

i ={z1,2T2,...,2x} C Q.

By the fitness ®; of a population ¢ we usually mean the maximal fitness of its
members,

Py(t) = max 6, (¢). (1)

el

1Support for this work from the Natural Sciences and Engineering Research Council of
Canada (NSERC)

2Department of Mathematics and Statistics, Acadia University, Wolfville, NS, B4P 2R6

3School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332

In some instances, another definition of the fitness of a population might be
convenient.

Our basic penalty mechanism is simple. Let M : Q@ — [0,00) be a measure
of feasibility. That is, M (z) = 0 if and only if x € Q is feasible and M (z) > 0
if = is infeasible. For our results, it is possible for M(z) € {0,1}. Further, let
(B¢ be an increasing sequence of positive numbers. Given z € Q and t € N, we
define the attenuated fitness ¢ (t) to be

$u(t) = e MO f(2). (2)

This clearly has the effect of imposing an increasing penalty on infeasible states
as the iteration count ¢ increases.

It is useful to point out the analogy with simulated annealing (SA). SA
uses a cooling schedule where temperature is some function of the iteration
count, T' = ¢(n), often taken as c¢(n) = C/log(n). Then the probability of an
unfavorable transition is given by

— AL log(n) AE/(kC)
e AP = = (1/n)> 3)

Matching analogous parts of the penalty in (2) with (3), we have M correpsond-
ing to AE/(kC) and f; corresponding to log(n).

For a given Genetic Algorithm and two populations 7, j, we use p;;(t) to
denote the probability of a one-step transition from population ¢ to population
j at time ¢ (as our probabilities will in general be time-dependent). We define
F C T as those populations containing only feasible states, Z C I' as those
popluations containing only infeasible states and M C T' as all other states
(that is, each population in M contains at least one feasible and one infeasible
state).

Related Prior Work

The problem of optimization under a constraint is clearly a classical problem
and has generated a huge amount of research. For a very nice overview of
evolutionary approaches to optimization in general see [2], and in particular
chapter 9 for a discussion of constraint-handling techniques. The paper [3] also
has some good discussion on constraint-handling.

There are many possibilities for handling constraints in evolutionary al-
gorithms including deleating infeasible solutions, attempting to “repair” or
“project” an infeasible solution to the set of feasible solutions, and designing
the algorithm to maintain feasibility, to name just a few. Our approach is very
simple in that infeasible solutions are treated the same as feasible solutions and
the dynamic penalty will asymptotically force them to be removed from the
population. In addition, by adding an extra “annealing” to the algorithm, the
process is guaranteed to converge not only to the set of feasible solutions but
also to the set of feasible and globally optimal solutions.

The problem of designing a population-based evolutionary algorithm with
a Boltzmann invariant distribution has also previously been investigated (in

particular, see [4, 5, 6]). In [5], Variation 1 of the algorithm leads to a Boltzmann
distribution on populations with the fitness of a population defined as the sum
of the fitnesses of the individuals. Our method as outlined in Sections 4 and 5
is close to this method and provides another technique to ensure reversibility
(using trits). We discuss the method in [6] further at the start of Section 4 and
compare it with our method.

2 Convergence of penalized GA to feasible states

In this section, we discuss the problem of using a Genetic Algorithm for a con-
strained optimization problem. Our approach will be to incorporate a dynamic
penalty attenuating the fitness of the infeasible states so that in the limit all the
infeasible solutions will be poor performers in comparison to any feasible state.

There are two basic goals in using a dynamic penalty approach to solve a
constrained optimization problem:

1. Ensure that the “solution” is a feasible state.

2. Ensure that the “solution” is an optimal state.

Here the “solution” is that point of the state space which is identified by the
algorithm as being optimal.

Clearly the second goal is a stronger condition than the first (at least, if the
dynamic penalty is working correctly). We start with the first condition, as it
is the simpler one to ensure. However, we point out that even the first goal is
not always a trivial task. For some combinatorial problems finding even one
feasible solution can be an NP-hard task (for example, the TSP problem with
time constraints).

We say an attenuated fitness GA is irreducible if the unattenuated version
of the GA is irreducible as a Markov Chain. This means that it is possible for
the GA to transition from any population to any other population in a finite
number of steps.

We will say that an attenuated GA is asserting if there is some § > 0 so
that for any population 7 containing an infeasible individual x there is another
population j retaining all the feasible individuals from ¢ but where x has been
replaced by a feasible individual and for which p;; > ¢. Further, we say the chain
is infeasible diminishing if the probability of a transition to a population with
more infeasible individuals than the present population decays to 0 as t — oc.

The interest in these definitions is that in order that the “solution” will be
feasible, it is sufficient that a GA is asserting and infeasible diminishing. If the
selection or removal phase of the GA depends on ratios of (attenuated) fitness,
then the GA will most likely be infeasible diminishing. Many implementaions
of the mutation operation will allow the creation of any individual in one step.
In this case, the GA will be asserting (as with positive probability an infeasible
individual can be exchanged for a feasible one).

Theorem 2.1 Let X,, be the Markov Chain associated with an attenuated GA
which is asserting and infeasible diminishing. Then asymptotically as n — oo,
P(X,eF)—1.

Proof: If K is the population size, then by the assumption that the GA is
asserting we see that

Pr(X,,; € Fsomei=0,1,2,...,K|X,) > >0

for any n and state (population) X,. However, then this means that with
probability one we have X,, € F infinitely often. The fact that the GA is
infeasible diminishing means that Pr(X,4; ¢ F|X, € F) — 0 as n — 0.
These two facts imply the result. ||

Notice that since the state space is finite (our blanket assumption in this
paper), there is some time t* so that for any fixed ¢ > t*, the attenuated fitness
of any infeasible state is worse than the fitness of any of the goal (optimal)
states. Thus, if one fixed the attenuation factor at this level, an unconstrained
GA would find the same feasible goal as the constrained GA. Of course, the
problem is that one does not in general know when this time ¢* occurs and thus
needs to continues the attenuation.

However, just because the GA limits to feasible states does not necessarily
guarantee that it will find the optimal solution. What may happen is that
the feasible states comprise a collection of “islands” which are surrounded by
infeasible states. If the problem is deceptive and the dynamic penalty is not
carefully controlled then it is possible to get stuck in the wrong component
with high probability and have the GA never sample an optimal state. In the
language of Markov Chains, the limiting chain has multiple ergodic components
and the chain gets stuck in one of these components which does not contain an
optimal state.

Example of non-convergence to optimal

As an example, take the state space Q = {0,1,...,7} with states 1,2,...,6 as
infeasible and f(0) = 2, f(7) = 3 and f(x) = 1 for all infeasible states z. We
take B; = In(t) so that e=M5 = 1/t (so M(z) = 1 for all infeasible states).
For the GA, take a four-population three-bit genetic algorithm as follows. An
iteration starts by selecting, one at a time, four members of the current pop-
ulation via the roulette wheel method (that is, proportional to fitness). Those
selected are paired off randomly and cross-over is performed on the bit repre-
sentations of both pairs to obtain two offspring each (the cross-over point is
equally likely to be between any two bit positions). Next, one mutation is per-
formed with probability p. If a mutation is to occur, one of the four offspring is
selected equally likely and one bit of the selected offspring is chosen at random

and “flipped”. With or without mutation, the four offspring constitue the new
population completing the iteration.

This GA is infeasible diminishing as the selection is proportional to fitness,
so as the iteration count increases, the infeasible individuals become less likely to
be selected for the next population. It is also asserting, as the bit representation
of an infeasible individual has either one or two bits set to 1, so can be mutated
to a feasible individual by flipping the correct bit.

However, it can be shown that if the GA has not found the optimal state
(state 7) by iteration N, then the probability that it will ever be found decays
to zero as N tends to infinity. The infeasible states form an ever deepening
“valley” between the two feasible states and it becomes more and more difficult
to traverse this “valley” as the algorithm proceeds.

3 Ensuring the convergence of a GA

In the following sections, we present two methods for ensuring the convergence
of a GA (dynamic penalty or not) to the set of global optimal states. The
first method consists of controlling the (time varying) limiting distribution by
ensuring that it is the Boltzmann distribution while the second one only adds
an acceptance phase to the GA.

Genetic algorithms plainly tend to favor more fit individuals over less fit
ones. Thus, increasing the fitness of desirable individuals while decreasing the
fitness of undesirable (or even infeasible) individuals during the course of a GA
run is one way to try to ensure convergence. However, this really only works if
the transitions (and thus the invariant distribution) depend in a predictable way
on the fitness. That is, using changing fitness pressure to guide the GA usually
requires a modification of the GA mating and mutation operators as well as the
selection operator. However, once you do this, you might as well change them
in such a way to make the invariant distribution easy to predict. This is the
strategy we take with our first method of Boltzmann transitions. This strategy
derives its motivation from Simulated Annealing, where by construction the
(time varying) invariant distribution is the Boltzmann distribution.

Our second method also derives inspiration from Simulated Annealing, but
this time only in the fact that it uses an acceptance protocol independent from
the original GA, which is used as the proposal process. That is, we use the
original GA operators to generate a new population from the old one and then
use the acceptance protocol to decide whether to take the transition to the
new population or to keep the old one. This method requires fewer changes
to the GA algorithm, but it does not have a predictable sequence of invariant
distributions.

4 Method I: Boltzmann transition rules

One method for assuring that the limiting distribution, as ¢ — oo, has unit mass
on the state of global optima is by controlling the stationary distribution of the
chain at every value of t. Then it becomes a matter of increasing t sufficiently
slowly in order that the chain closely approximate its stationary distribution
each step of the way. In this section we keep the parameter t fixed and attempt
to engineer the stationary distribution of the algorithm for that fixed time. As
above, our control over the algorithm is via the fitness funcition ¢(¢); as we fix
t, we notationally suppress it when convenient.

The Boltzmann distribution on the space I' of populations is the one for
which the probability of observing population ¢ is proportional to ®;(¢),

Pr(i) = L(t)
Yjer®;(t)

The stationary distribution 7(¢) of a standard genetic algorithm favors pop-
ulations of greater fitness, but to what degree is normally difficult to predict.
However if it were possible to arrange this to be the Boltzmann distribution then
7(t) would be easy to calculate and it would be simple to compare populations
with respect to their sampling frequency.

One way to ensure the stationary distribution will be Boltzmann is if the
property known as detailed balance holds. Given the transition probabilities
Dij (t)a if

1L ()pi; (t) = 1L; (¢)pyi(t) for all i,j € T (4)

holds, then II is the stationary distribution. The idea is to ensure this relation
with II as the Boltzmann distribution. The detailed balance equation (4) is
also known as the reversiblility condition in that a chain which satisfies (4) will
look the same running backwards in time as running forwards (that is, if it has
achieved its stationary distribution).

We provide one mechanism for achiving a Boltzmann distribution. For
other alternatives, see [4, 6]. In particular, [6] has a very similar theme to
our method (as described in this section and the next). In [6], the author also
uses Boltzmann-like selection probabilities to ensure the Boltzmann distribution
is the stationary distribution. Each iteration also changes only one population
member at a time. However, the scheme for ensuring reversibility (their sym-
metry condition on the neighborhoods) in their example GA seems to have a
problem and we devised the “trit” representation (discussed in the next sub-
section) as a practical way to ensure reversibility. In particular, allowing only
one parent of the “child” to be removed is necessary for reversibility. A scheme
which allows the removal of an arbitrary member of the population is generally
not reversible.

In fact, our method ensures both the reversibility of the Markov Chain and
also yields a chain in which it is possible to go from any population to one
consisting of only optimal states all the while not decreasing the population
fitness. This makes the optimization problem have only one “basin”, and gives

the limiting chain only one ergodic component. We describe our methods in
detail and provide proofs in part because the results in [6] cannot be applied to
our situation, as our transitions do not satisfy their reversibility condition and
our fitness function is time-varying, both because of the dynamic penalty and
also because we anneal to force the process to find the optimal feasible states.

Tri-state elements or trits

The transition from one population to another, ¢ to j, is conducted by con-
structing a proposed new population using “mating” and “mutation”. This is
followed by a roulette wheel selection which could result in the new population
being accepted or in no change to the population. Cast in these terms, the
process is reminiscent of that in simulated annealing. We define the process
in such a way as to be reversible. As equation (4) shows, this is necessary for
detailed balance to hold.

The usual way of representing individuals is by using a bit representation.
However, then the usual cross-over mating and elimination might not be re-
versible. A simple example is combining the two parent bit-strings 01 and 10
to get an offspring of 00. Then if we remove the parent 01 and retain 10 and
00, it is impossible to generate 01 from the remaining population. Thus, this
operation is not remowal reversible.

Instead, suppose that the points x of 2 are L-tuples of the three element set
{0,1,2}, in short, L-tuples of trits. This can be arranged when the points of 2
are real numbers simply by representing them in base three.

For two trits s,t we define the symmetric complement operator A as

8y lfS:t
sAtz{{O,lj}\{s,t}7 if s #£1¢.

For two vectors of trits x,y, we define x A y component by component.

Given a population ¢ of size K, say i = {x1,...,2x}, select two equally
likely, say z1 and xo, and then use the operator A as the mating operator,
Yy =z A 9.

The binary operator A has the property that from any two of the three
points, x1, w2, or y', the third can be recovered component by component and
thus we have:

Property 4.1 The symmetric complement operation on trits is removal re-
versible.

Returning to the proposal scheme, we now perfom a “mutation” operation.
To do this, having constructed y’, next select one of its L components equally
likely and replace that component by a randomly selected trit. (Alternatively,
several trits could be mutated in this way.) Denote the resulting mutated off-
spring by y; y together with z; and zo form an augmented sub-population. We
remove one of these three via the roulette wheel method as described next. The

basic philosophy is that the removal probability should depend on if removing
the given individual could decrease the fitness of the population (note that it
couldn’t increase the fitness).

If ®; > max(dy, Pu, , Pu,), make the roulette wheel probabilities equal, that
is, select which individual to remove from the augmented sub-population equally
likely.

If ®; < max(¢y, s, , dz,) let @ be the largest number and w be the second
largest number in the set {¢y, s, , Pus -

We define the roulette wheel probability for removing whichever point cor-
responds to « (the most fit individual) as

w
20+ w

The roulette wheel probabilities for the other two are both equal to

o
20+ w’

Notice that if @ = w then all the transitions probabilities are equal to 1/3.

Implementing the trit GA as described here takes only a modest additional
effort. Forming the offspring vy = 1 A z2 requires, in each component of the
L-tuple, setting the trit of 3’ equal to that of x; and z if they are the same
or equal to the one missing if they are not. Then for roulette wheel selection
both the first o and second w largest fitnesses for the 3 member augmented
population must be determined, which is a very simple matter.

The probability p;;(t) of a transition from population ¢ to another population
Jj is easily calculated. If ¢ and j differ in more than one member, then p;;(t) = 0.

Otherwise suppose that ¢ and j differ in only one member. This member, y,
of j must be the symmetric complement of two members of i, except possibly
in one trit, with one of the members unique to 3.

Since we selected the two “parents” equally likely from the population, the
probability that any given pair is selected is

2
KK —1)

CcC =

(recall that K is the population size). Similarly, since we select which component
to mutate equally likely, the probability that mutation results in with a specified
component in a given value is

1

#:ﬁ

as there are L components each with three possible values.
Now suppose z1 and x5 are selected as parents from population i and assume
¢z, > ¢z, and y is generated as the offspring. Then

0 cl (ﬁ) , if ¢z, > ¢y and x; is removed
pii(t) =
N cp (ﬁ) , otherwise.

In the first case notice that x; has been replaced by y and so ®; < ®; (as
by > y)-

Theorem 4.1 Detailed balance holds for tri-state transitions as defined above.

Proof: Ifi = j there is nothing to prove. Otherwise some member of i, z; say,
has been replaced by some point, y. Therefore the augmented sub-population
a will contain x1 and y. There could be several paths from ¢ to j in which the
third member of the augmented sub-population differ. What we show is that
each such path, through the same augmented sub-population, is reversible and
satisfies detailed balance; hence the transition from ¢ to j will as well.

Let 1 and x5 be selected for mating and let y be the mutated offspring; then
a = {y,x1,22}. To show detailed balance through a involves the consideration
of several cases. First, if ®; > max (¢, , ¢z,,dy), then &; = ®; and since the
removal probabilities are 1/3, it follows the result is correct for this case.

Next suppose o = ¢, . If y is selected out, then j = ¢ and detailed balance
holds. If z; is selected out, then j = {y,z2,...,2x} and ®; = w since « is the
fitness of 21 and z; was removed. Hence

w
®; pij = acp (2a+w>

and, since y is selected out on the reverse transition,

«
®; pji = wep (2(1 +w> :

Detailed balance holds as these are equal. If x5 is selected out, then j =
{y,z1,...,2x} and ®; = o. Hence

a
Q; pij = acp (2a+w) =®; pji

since again y is selected out on the reverse transition Thus detailed balance
holds if o = ¢, .
The remaining case a = ¢, is similar and is omitted. |]

Irreducibility

We consider the irreducibility of the chain for ¢ < oo here; the case for the
limiting chain as t — oo is taken up below in Section 5. When t < oo the chain
is irreducible even while maintaining fixed members of the population. Let i be
any population and let z be a member of ¢ of maximal fitness. Now let j be any
population containing x, then there is a finite sequence of populations, ig = 1,
i1, - .., iy = j, each of which contains x, such that p;,_, ;. (t) >0, k=1,...,¢.
To show this we only need to show that for each member z of j different
from a member of 4, it is possible to generate z in a finite number of steps from

something in 4 different from x all the while maintaining x in the population.
But this can be accomplished trit by trit as follows. Let 2’ be any other member
of i. We describe what to do in the step where we are working on the /th trit,
so there are L — ¢ trits left to fix. If the current trit of and z match, say
both are 0, then in the mutation phase, mutate the current trit of ¢ = z A 2’
to be 0, giving the result y. In the selection phase replace =’ by y, whose ¢th
trit matches the £th trit of both x and z. Now, in subsequent steps, symmetric
complement preserves this matching trit.

If the ¢th trit of and z differ then mutate the £th trit of 3/ = z A 2’ to
be either a) matching the fth trit of z if L — ¢ is even or b) the symmetric
complement of the fth trit of z and the ¢th trit of z if L — £ is odd. In the
selection phase, again replace z’. On subsequent steps the only change to this
fth trit will be from taking the symmetric complement with z. Making the
choice based on whether L — ¢ is even or odd insures that on the last step this
trit will match the corresponding trit of z. In each iteration, one additionial trit
is modified in a way to guarantee that at the final step all will match those of
z.

Notice that x is preserved in all these steps and that each step can occur
with positive probability.

5 Annealing the Boltzmann GA

As noted in the Introduction, we employ a penalty method for treating infea-
sible solutions, which takes the form of attenuating their objective values by
a multiplicative factor of e=M(#)8 Ag run-time ¢ increases, the fitness of in-
feasible solutions must be recalculated, but the simple form of the attenuation
makes this easy to do.

Attenuating the fitness of infeasible solutions is not enough to assure that the
limiting chain converges to an optimal solution only that it should converge to
a feasible solution (as discussed in Section 2). Thus, in addition to attenuation,
the fitnesses of both feasible and infeasible solutions alike will be “cooled”. We
take the fitness of the inhomogeneous chain to be

o () = (e*M@)Bt f(x))t .

Now we consider the limiting chain as ¢ — oo. Recall the definitions of
a(t) and w(t) as the largest and second largest fitnesses of the augmented sub-
population {z1,z2,y} where again y is the individual which has been newly
generated.

Lemma 5.1
1. If @;(t) > max{¢y, (1), ¢z, (1), @y (1)}, then removal is equally likely.
2. If ®,(t) < max{dz, (1), s, (1), dy(t)}, then, ast — oo, either x1 or xs is
selected out equally likely.

10

3. If ®,(t) = max{ s, (t), ¢z, (t)} = ¢y (t), then removal is equally likely.

4. If ®;(t) = max{ds, (), ¢z, (1)} > ¢y(t), and ¢y, = ¢, then removal is
equally likely.

5. If @;(t) = max{¢g, (t), ¢z, (1)} > Oy(t), and ¢z, > ¢, then, as t — oo,
either xo or y is selected out equally likely.

Proof: (1) is by definition. In case (2), a(t) = ¢,(t) and w(t) < «(t). Put
h=w(t)/a(t) <1, then h — 0 as t — oo and we have

w B h

—_a _ =0
2atw 2+%2 2+h

as t — oo. Therefore asymptotically y will not be selected out. At the same
time,
o 1 1

= —

20+w 24+h 2
as t — oo so asymptotically x; and x4 are selected out equally likely. In cases
(3) and (4), a(t) = w(t) so removal is equally likely. Case (5) is argued like case
(2) with the roles of y and z; interchanged. I

Theorem 5.1 Let p;; = limy_. p;;(t) be the stepwise limiting transition prob-
abilities.

1 If @;(t) < ®4(t) then p;; = 0.
2. If j can be proposed from i and ®;(t) > ®i(t) then pi; = 1.
3. If j can be proposed from i and ®;(t) = ®;(t) then p;; > 0.

Let C be the collection of populations containing a global optimizer and R =
'\ C be the remaining populations. Then C is the unique closed irreducible
ergodic set for the limiting chain and R is a transient set.

Proof: The transition assertions follow easily from Lemma 5.1. Now let i be
any population and j a population containing a global optimizer. Let x and z be
individuals of maximal fitness for ¢ and j respectively. From the irreducibility
arguments of the previous section we may proceed trit by trit to assemble the
trits of z all the while maintaining x in the population. Hence we need not
attempt a transition to a less fit population. If we encounter a transition to a
more fit population during the process, we take it with certainty. Now replace x
with the individual of maximal fitness in this new and more fit population and
continue. I

11

Theorem 5.2 For any manner in which t — oo, the stepwise stationary distri-
bution (t) converges, m = limy_, oo 7(t). Moreover the overall transition matriz

t

P(0,t) = [P(#) = [pi;(0,0)]

7=0

converges and to a limit independent of the starting distribution,
pij(O,t) = PT(Xt € j‘Xo S Z) =T
where m; = lim;_, oo m; ().

Proof: For each fixed ¢, by our assumptions 7 (t) is the unique stationary
distribution. Furthermore, p;;(t) — p;; and the limiting transition matrix has
only one ergodic component C' consisting of those populations which contain a
feasible globally optimal state. The result then follows from Theorem 1.1 in [7],
which covers this special case. ||

6 Method II: adding an acceptance protocol

Our second method of ensuring the convergence of a GA to the set of optimal
states is to add an acceptance protocol to the original GA, while using the original
GA as a proposal process. The proposal process generates possible new states
for the chain, while the acceptance protocol decides whether to move the chain
to the proposed new state or remain with the current state. We present the
algorithm as a maximization algorithm, but minimization is similar.

In this section, we assume that the original GA is time independent and gen-
erates a Markov chain which is ergodic. We denote by G' = (g;5) the transition
matrix generated by the original GA. Let a, = 1/log(n + 1) for n = 2,3,....
Then for any k > 0 we have

Sab=3
n n

(log(nk +)F

First, we describe our algorithm for unconstrained optimization (that is,
with no differentiation between feasible and infeasible states). Thus, we have the
function f : 2 — R which we wish to maximize, and we let the fitness function
¢ of the algorithm be equal to f (in the case of a constrained optimization with
a dynamic penalty, ¢ and f differ). Then each step in the modified GA is:

1. Starting from the current population i, use G to generate a new population
J

2. If ®; > ®;, then accept the transition to the new population j

3. If ®; < ®;, then with probability a, accept the transition to the new
population and otherwise remain with the old population.

12

This generates a non-homogeneous Markov chain X,, on populations I". Let
G C I' denote the collection of populations which contain at least one globally
optimal state.

Notice that it really doesn’t matter how one assigns a fitness to a population
(rather than an individual), as long as populations with optimal fitness contain
optimal states. That is, one can assign the fitness of a population to be the
maximum fitness of its individuals, the sum of the fitnesses of the individuals,
or many other variations. This will change what constitutes G, but not the fact
that an optimal individual has been found.

Theorem 6.1 P(X,, € G) — 1 as n — 0.

Proof: Because we assume that G is ergodic, there is some k so that it is
possible to reach a state in G from any starting state in {2 in at most k steps.
Furthermore, since Y, a¥, = oo, by Theorem 2 in [8] the desired result holds. |

The condition that), a¥, = oo is used in Theorem 2 from [8] to show that
the non-homogeneous Markov chain X,, is weakly ergdic. The fact that the
transition probabilities always favor fitness-increasing transitions is then used
to show that the chain has a limiting distribution which is fully supported on
the optimal states of the chain, here the optimal populations.

Now we turn to the situation where the state space {2 contains both feasible
and infeasible states. We denote (as before) by F the populations with only
feasible individuals. For this situation, we let M (z) be a measure of the infeasi-
bility of individual z, so that M (z) = 0 means that z is feasible while M (z) > 0
means that z is infeasible. We define

¢a(t) = e M f(2)

and define for a population %

(1) = 3 u(t).

TEL

Again we mention that this particular definition of the fitness of a population
is not necessary, many other definitions would do just as well. We choose this
one, rather than the one we have used previously in the paper given in equation
(1), mainly to illustrate this point that many variations will work.

We initialize t = 0, 8; = 1 and our initial population ig. Here (3; will be
used to keep track of our attenuation of infeasible solutions. Using this, our
algorithm is:

1. Starting from the current population i;, use G to generate a proposed new
population j.

13

2. If ®,(t) > ®;,(t), then accept the transition to the new population j so
that it+1 = j

3. If ®;(t) < ®;,(t), then with probability a; set i;11 = j and otherwise
T4l = iy

4. Tf the best (so far) attenuated (attenuated at the level given by ;) infea-
sible is still better than the best so far feasible, increment 3;, that is set

By =By + 1.

5. Increment ¢.

At a fixed value of (;, this is (basically) the same as the algorithm for uncon-
strained optimization. Now, clearly at the beginning of a run the value §; will
be changing with almost every iteration. As the simulation proceeds, however,
the attenuation will remain fixed for long periods of time, only changing when
a new (and very good) infeasible state is found.

By Theorem 6.1, fixing the value of 8; will result in a chain which converges
to the optimal solution for THAT specific problem instance. Note that this
optimal solution might depend on the value of (3;, as the “fitness landscape”
given by ®(t) depends on ;. However, there is some t* so that for any §; > t*,
the optimal solution will be the desired globally optimal feasible solution.

By irreducibility, the process will eventually visit every infeasible state, so
eventually the attenuation will reach a point that the best attenuated infeasible
state is worse than some feasible state. At this point the attenuation will freeze
and the chain will behave like the unconstrained algorithm. Since a; decays
sufficiently slowly, it doesn’t matter at what iteration this occurs; convergence
to the global optimal is assured. Thus we have the following theorem.

Theorem 6.2 The attenuated algorithm discussed above generates a Markov
chain which satisfies P(X; € G) — 1 as t — oo.

7 Closing Comments

The idea of updating the attenuation only when the process encounters a new
(and better) infeasible state can be incorporated in many stochastic algorithms
for optimization. One such example is Compressed Annealing from [9]. Instead
of having an incredibly slow compression schedule (where A is required to grow
slower than O(In(k)), see Section 3.3.1. in [9]), one could only increase the
pressure when necessary.

References

[1] DAVIS, T.E. and PRINCIPE, J.C., A Markov framework of the simple
genetic algorithm, Journal of Evolutionary Computing, Vol. 1, No. 3,
pp. 269-288, 1993.

14

2]

[3]

Michalewicz, Z. and Fogel, D.B. How to Solve It: Modern Heuristics.
Springer-Verlag, 2000.

Michalewicz, Z. and Attia, N. Evolutionary optimizaion of constrained
problems, Proceedings of the 3rd Annual Conference on Evoutionary
Programming, 1994.

Goldberg, D.E. A note on Boltzmann tournament selection for ge-
netic algorithms population-orientetd simulated annealing, Complex
Systems, 4 (4):445-460, 1990.

Mahfoud,, Samir W. and Goldberg,, David E, Parallel recombinative
simulated annealing: a genetic algorithm, Parallel Comput. Vol 21,
Issue 1, 1-28, 1995.

LOWE, M., On the Convergence of Genetic Algorithms, Expostiones
Mathematicae, Vol 14, pp. 289-312, 1996.

GIDAS, B., Nonstationary Markov chains and Convergence of the An-
nealing Algorithm, Journal of Statistical Physics, Vol. 39, No 1/2, pp.
73-131, 1985.

ANILY, S and FEDERGRUEN, A., Simulated Annealing Methods with
General Acceptance Probabilities, Journal of Applied Probability, Vol.
24, No 3, pp. 657-667, 1987.

OHLMANN, J., and BEAN, J. and HENDERSON, S., Convergence
in Probability of Compressed Annealing, Mathematics of Operations
Research, Vol. 29, Issue 4, pp. 837-860, 2004.

15

