
A Constructive algorithm to solve “convex recursive deletion” (CoRD)

classification problems via two-layer perceptron networks

by
C. Cabrelli1, U. Molter1

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I

1428 Buenos Aires, Argentina
and

CONICET, Argentina
email: ccabrell@dm.uba.ar, umolter@dm.uba.ar

and

R. Shonkwiler
School of Mathematics

Georgia Institute of Technology
email: shonkwiler@math.gatech.edu, web: www.math.gatech.edu/˜shenk

Abstract
A sufficient condition that a region be classifiable by a 2-layer feed-forward

neural net (a two-layer Perceptron) using threshold activation functions is that
either it be a convex polytope, or that intersected with the complement of a
convex polytope in its interior, or that intersected with the complement of a
convex polytope in its interior, or . . . recursively. These have been called Convex
Recursive Deletion (CoRD) regions. We give a simple algorithm for finding the
weights and thresholds, in both layers, for a feed forward net which implements
such a region.

The results of this work help in understanding the relationship between the
decision region of a perceptron and its corresponding geometry in input space.
Our construction extends in a simple way to the case that the decision region is
the disjoint union of CoRD regions (requiring three layers). Therefore this work
also helps in understanding how many neurons are needed in the second layer of a
general, three layer network. In the event that the decision region of a network is
known and is the union of CoRD regions, our results enable the calculation of the
weights and thresholds of the implementing network directly and rapidly without
the need for thousands of backpropagation iterations.

§1 Introduction

We define an (n-input) neuron N as a device capable of

1 This research was carried out during a six month visit of Cabrelli and Molter at the
School of Mathematics, Georgia Institute of technology. These authors acknowledge the
support received during their visit. They are alsso partially supported by grants: UBACyT
TW084 and CONICET, PID 456/98.

1

(1) forming the weighted sum σ = Σxiw
i of its inputs, x1, . . . , xn, with weights w1, w2,

. . ., wn, and

(2) thresholding the resultant sum with a given value θ, a real number, to produce an

output: y = 0 if σ < θ or y = 1 if σ ≥ θ.

Mathematically such a neuron evaluates the function y = uθ(x
tw) where uθ(·) is the step

function (or hard limiter) with threshold θ, and σ = xtw is the dot product between the

input vector x = (x1, . . . , xn)t and weight vector w = (w1, . . . , wn)t.

With each n-input neuron there is associated a unique oriented hyperplane Hw,θ of

n-dimensional Euclidean space Rn given by

Hw,θ = {x : xtw = θ} (1.1)

whose positive side is in the direction w and whose distance from the origin is d = |θ|/‖w‖.

Hw,θ decomposes Rn into two half-spaces, H+

w,θ = {x : xtw ≥ θ} and H−

w,θ = {x : xtw <

θ}, and is the boundary of both. The hyperplane itself belongs fully to the positive half

space. The output of the neuron is 1 for an input x if and only if x ∈ H+

w,θ. Since the

solutions x to the inequality xtw ≥ θ are invariant under its multiplication by a positive

constant, that is, for c > 0, also xt(cw) ≥ cθ, distinct neurons (their weights and thresholds

differing by a positive multiple) may be associated with the same half-space. But this fact

may be used to advantage by allowing scaling of the weights or threshold as necessary

to meet implementation requirements. For example, a threshold might correspond to a

voltage in an electric circuit which may not be arbitrarily large. An artificial Neural

Network consisting of a single such neuron is known as a Perceptron.

We define an (m-neuron) layer Ln of n-input neurons as a list N1, . . . , Nm of m neurons

defined over the same set of n inputs.

Let neuron Nj have threshold θj and weight vector wj = (w1
j , . . . , w

n
j)t, j = 1, . . . , m,

that is wi
j is the weight connecting the ith input to the jth neuron. Let W be the n × m

matrix whose m columns are the n-vectors wj . Then the m-dimensional vector of weighted

sums σ̄ is given by the matrix product

σ̄t = xtW (1.2)

and the m-dimensional vector output of the layer is given by

y = Uθ(x
tW) = (uθ1

(xtw1), . . . , uθm
(xtwm))t. (1.3)

2

(The last member defines Uθ(·).) Each component yj of y is either 0 or 1 depending on

the output of the jth neuron and so the possible outputs are vertices of the m-dimensional

unit cube Qm,

Qm = {(y1, . . . , ym) : yj ∈ {0, 1}, 1 ≤ j ≤ m}. (1.4)

We refer to the space Rm containing Qm as cube-space.

Fig. 1a. Network, w1 = [−1 −1]
t
, Fig. 1b. Input space and atoms

w2 = [0 1]
t
, w3 = [1 0]

t
, e.g., a011 is the intersection of the neg.

θ = [−1 0 0]
t

side of H1 and pos. sides of H2, H3

Fig. 1c. 3-cube representation of the output

e.g. y1 = 1, y2 = y3 = 0 is the vertex (100)

3

For a layer of n-input neurons, define the function q : Rn → Qm by

q(x) = Uθ(x
tW). (1.5)

Since the m-cube has exactly 2m vertices, many inputs x will have the same q value. Given

a vertex y ∈ Qm, the yth atom or cell ay ⊂ Rn is the inverse image

ay = {x ∈ Rn : q(x) = y}. (1.6)

Each such atom is the intersection of half-spaces,

ay =

m
⋂

j=1

H
ǫj

wj ,θj
, (1.7)

where ǫj = +, if yj = 1, and ǫj = −, if yj = 0. Therefore each atom is a convex polytope

or the empty set. The set of all (non-empty) atoms {ay : y ∈ Qm} forms a partition of

input space Rn into mutually exclusive, exhaustive convex polytopes. (A convex set is

one for which, given any two points contained in it, then their joining line segment is also

in it. A convex polytope is a convex set whose boundary consists of a finite number of

hyperplanes. The entire space qualifies since it is convex and its boundary is empty. A set

which is the intersection of a finite number of half-spaces is convex because whenever two

points lie on one side of a half-space, then their joining line seqment does also.) Atoms

may be empty, bounded, unbounded, open, closed, or contain only part of their boundary.

In general there must necessarily be empty atoms. Fig. 1 illustrates these concepts for a

2-input 3-neuron example.

Now let the output y of the layer L1
n be taken as the input to a second layer L2

m

consisting of a single m-input neuron O with weight matrix (vector) V and threshold η.

We will refer to such a two layer feed forward net as a Two-layer Perceptron. As above, O

corresponds to an m-dimensional hyperplane KV,η,

KV,η = {y : ytV = η}, (1.8)

K+

V,η = {y : ytV > η}, K−

V,η = {y : ytV < η}, (1.9)

which exists in cube-space along with Qm. This cube-plane, as we shall call it, may intersect

Qm. In such an event, the vertices of the cube are partitioned into two disjoint sets,

F = K+

V,η ∩ Qm, and G = K−

V,η ∩ Qm. (1.10)

4

In turn, the set of vertices F correspond to a set of atomic convex regions of input space;

let

F =
⋃

y∈F

ay ⊂ Rn (1.11)

be their union, see Fig. 2. Note that in general there are vertices that correspond to no

actual atom, these are “don’t care” vertices. For example, only 7 atoms, at most, result

from the intersection of 3 lines in the Euclidean plane while there are 8 vertices of the

3-cube. Using the same labeling as in fig. 1, vertex E in the figure is a “don’t care” vertex.

Fig. 2a. Union of atomic regions F . Fig. 2b. Their corresponding cube vertices.

We say the region F is implemented by the two layer net L1
n and L2

m because the

output of neuron O is 1 if and only if x ∈ F . The Two-layer Perceptron classification

problem is that of finding a characterization of those regions of n-dimensional space which

can be implemented by a two layer neural net. As we’ve seen, a collection F of convex

polytopes arising from the decomposition of the input space Rn by hyperplanes will be

two-layer classifiable if and only if their corresponding set of vertices in cube-space can be

separated by a cube-plane from the vertices corresponding to the region complementary

to F . Evidently, the complement of a classifiable region is itself classifiable because the

output neuron will be 1 on the complement if and only if it is 0 on the region.

Although an intrinsic characterization of two-layer classifiable regions is not known,

several sets of sufficient conditions have been given, see [1],[2],[3],[5]. One general type

of classifiable region is a nest of convex polytopes which alternate in black and white

5

monochromatic colors, that is between F and its complement; these are called CoRD

regions, see [4] and below.

Continuing the color analogy, we shall refer to the cube vertices designated by F as

Black and those designated by G as White. Further, in the remainder we will assume the

output of O is to be 1 in the Black regions and 0 on the White ones.

1 2 3 4

1

2

3

4

(a) A CoRD region (b) A CoRD region

(c) Not a CoRD region

Fig. 3. Regions implementable by a 2-layer net

6

CoRD Regions

Let C1, C2, . . . , Cp be a nest of convex polytopes

C1 ⊃ C2 ⊃ . . . ⊃ Cp. (2.1)

We assume p is even, otherwise put Cp+1 = ∅. A convex recursive deletion, or CoRD,

region is a set S of the form

S = (C1 ∩ C′

2) ∪ (C3 ∩ C′

4) ∪ . . . ∪ (Cp−1 ∩ C′

p). (2.2)

where C′ denotes the complement of the region C. We allow the possibility that C1 = Rn.

(Then the complement of a CoRD region is such a region also.) Some examples of CoRD

regions in R2 are illustrated in fig. 3a,b. Note that region c of that figure is two-layer

implementable but is not a CoRD region.

Note that the representation of a CoRD region S is not unique. For example, the

shaded region in Fig. 3a is either the outer triangle with the inner square removed and the

inner triangle put back, a three stage construction, or the outer triangle with the truncated

square removed, a two stage construction.

It is shown in [4], via a non-constructive proof, that CoRD regions are two-layer

classifiable. In this work we give a simple method for calculating a separating cube-plane

KV,η, i.e. for finding weights and thresholds in a two-layer perceptron network which

implements a CoRD decision region. This method is presented in the next section. We

follow that with our conclusions.

The results of this work help in understanding the relationship between the decision

region of a perceptron and its corresponding geometry in input space. Further our con-

structions extend in a simple way to the case that the decision region is the disjoint union

of CoRD regions (requiring three layers). Therefore this work also helps in understanding

how many neurons are needed in the second layer of a general, three layer network. Finally,

in the event that the decision region of a network is known and is the union of CoRD re-

gions, our results enable the calculation of the weights and thresholds of the implementing

network directly and rapidly without the need for thousands of backpropagation iterations.

§2 Separating Cube-plane Construction

The proof that a CoRD region is 2-layer implementable proceeds step-wise by hyperplanes

starting from the inside and working out. As each new hyperplane is added, the associated

7

cube increases by one dimension. The new cube consists of the old cube as one face, a

duplicate of the old cube as the parallel face in the new dimension, and edges that adjoin

like vertices between the old cube and its duplicate. Thus, a 3-dimensional cube consists

of two parallel 2-dimensional faces with their four corresponding vertices adjoined. There

is a separating cube-plane at each step because the duplicate of the old cube in the new

dimension consists of verticies of only one color (or don’t care vertices). The construction

below follows this pattern; as the hyperplanes are added one at a time, the previous cube-

plane solution is extended into the new dimension and then slightly rotated, by adding

a new term, in such a way that the duplicated face lies entirely on one side of the new

cube-plane.

We begin by ordering the input space hyperplanes, H1, H2, . . ., Hm, starting with the

inner-most convex region and working out. More explicitly, let S be a CoRD region defined

by a nest of convex sets as in equations (2.1) and (2.2). The inner-most convex set, Cp, is

the intersection of half-spaces, say jp ≤ m in number, which we label (in arbitrary order)

Hǫ1
1 , Hǫ2

2 , . . ., H
ǫjp

jp
; thus

Cp =

jp
⋂

k=1

Hǫk

k .

As above, ǫk is either + or − depending on the orientation of Hk. Next, index the jp−1

hyperplanes giving Cp−1 starting with k = jp + 1 up to k = jp + jp−1 ≤ m. Continue

for Cp−2 to, lastly, C1. Then jp + jp−1 + . . . + j1 = m. Note that, as a consequence, the

coordinates yk will likewise be in this order.

We now define the orientation of the hyperplanes Hk.

Rule 1:

Orient each hyperplane outward (from the convex set it forms), see fig. 4.

Thus for the inner-most convex set, ǫ1 = . . . = ǫjp
= − and it corresponds to the vertex

at the origin of cube-space.

Without loss of generality, we may write the cube-plane equation in the form

s0 + s1a1y1 + s2a2y2 + . . . + smamym = 0, (2.3)

where the si are +1 or −1 and the ai are non-negative. These parameters will be chosen

so the resulting cube-plane separates the Black from the White vertices. Recall we are

assuming the Black vertices should evaluate to a positive result.

8

Hk

convex
polytope

Fig. 4, Hyperplane orientation by Rule 1

Rule 2:

For each new term, skakyk, if the outward side of Hk is Black (at this stage

of the construction), then sk = +1, otherwise sk = −1.

Said differently, for those convex sets used directly to form S, the signs corresponding to

their hyperplanes are +1, for those whose complement is used to form S, the signs will be

−1.

2.1 CoRD construction algorithm

The construction starts, step 0, with the entire input space taken to be the same color

as the inner-most region. If this region is Black, then the initial sign, s0 = +1 (since we

have taken positive to correspond to Black); if the inner-most convex set is White, then

s0 = −1.

Now we iterate over the input space hyperplanes working in the order of H1 to Hm.

Rule 2 determines the sign of the new term; it remains to determine the magnitude ak.

The simplest way to assign the factors in (2.3) is to take

ak = 2k. (2.4)

2.2 Correctness of the construction algorithm

The correctness of this simple solution is proved in a similar way as that given below for

the more delicately selected magnitudes which we discuss later. For a region as in Fig. 3a,

a 5 line White inner convex set removed from a 3 line outer one, this method gives

−1 + 2y1 + 4y2 + 8y3 + 16y4 + 32y5 − 64y6 − 128y7 − 256y8 = 0.

9

This power of 2 solution yields a cube-plane that is not best possible in the sense of

being at the maximal distance from the vertex sets F and G. A maximal distance solution

is desirable from the stand point of numerical stability in that it minimizes the possibility

that numerical error will result in a faulty assignment. The best possible solution is

constructed as follows (see Theorem 1 in Section 2.5 for the demonstration). Put

Ak = sum of the coefficients, excluding s0, in sign opposite to sk; (2.5)

so −skAk = |Ak|. Mathematically Ak =
∑k−1

j=1
[sjaj]

ǫ′k where ǫ′k is + if sk = −1 and − if

sk = +1, and [x]ǫ is defined by

[x]+ =
x + |x|

2
[x]− =

x − |x|

2
.

(That is, [x]+ equals x if x > 0 and equals 0 otherwise, while [x]− equals x if x < 0 and

equals 0 otherwise.) We take ak to be the solution of

s0 + Ak + skak = sk (2.6)

which is motivated as follows. On the outward side of Hk, yk = 1. On this side, the

expression must equal +1 if sk = +1 and −1 if sk = −1. Finally, in the worst case,

somewhere in the outward side of Hk, all the y′s with opposite sign could be +1 while

those of the same sign could be 0. Multiply (2.6) by sk and transpose to get

ak = 1 − sks0 + |Ak|. (2.7)

2.3 Examples

To illustrate this method, consider the region of Fig. 3a which may be regarded as a three

level nest of convex sets. The inner-most convex set, the triangle, is Black and is defined

by 3 lines. Following the orientation imposed by Rule 1, and using the step function uθ as

in the Introduction, they are:

y1 = u0(

[

x1

x2

]

t

[

0
−1

]

), y2 = u1(

[

x1

x2

]

t

[

1
1

]

)

y3 = u0(

[

x1

x2

]

t

[

−1
0

]

).

Moving to the second layer, the signs of the coefficients of y1, y2, and y3 are, by Rule

2, −1. Using (2.7) for the coefficient magnitudes, the sum of the non-constant terms of

10

opposite sign is 0, so a1 = 1 − (−1)(1) = 2 and the same for a2 and a3. Their neural net

connection in the second layer will be

1 − 2y1 − 2y2 − 2y3 = 0.

Next comes the square,

y4 = u0(

[

x1

x2

]

t

[

0
−1

]

), y5 = u1(

[

x1

x2

]

t

[

1
0

]

),

y6 = u1(

[

x1

x2

]

t

[

0
1

]

), y7 = u0(

[

x1

x2

]

t

[

−1
0

]

).

By Rule 2 the sign for these terms is +1 and the sum of the non-constant coefficients of

opposite sign is −6. Hence from (2.7), ak = 1 − (+1)(1 − 6) = 6, k = 4, 5, 6, 7. Adding

them to the second layer gives

1 − 2y1 − 2y2 − 2y3 + 6y4 + 6y5 + 6y6 + 6y7 = 0.

Finally, the outer convex set is the triangle,

y8 = u0(

[

x1

x2

]

t

[

0
−1

]

), y9 = u4(

[

x1

x2

]

t

[

1
1

]

),

y10 = u0(

[

x1

x2

]

t

[

−1
0

]

).

Doing the coefficient calculation and adding these terms to the second layer gives

1 − 2y1 − 2y2 − 2y3 + 6y4 + 6y5 + 6y6 + 6y7 − 26y8 − 26y9 − 26y10 = 0.

Notice that several of the outputs of the first layer are the same, for example y1 = y4 = y8

and y3 = y7 = y10. These may be combined to give

1 − 22y1 − 2y2 − 22y3 + 6y5 + 6y6 − 26y9 = 0.

The second interpretation of this CoRD region has an inner-most convex set consisting

of the truncated square bounded by 5 outward oriented lines,

z1 = u0(

[

x1

x2

]

t

[

0
−1

]

), z2 = u2(

[

x1

x2

]

t

[

1
0

]

),

z3 = u2(

[

x1

x2

]

t

[

0
1

]

). z4 = u0(

[

x1

x2

]

t

[

−1
0

]

),

z5 = u−1(

[

x1

x2

]

t

[

−1
−1

]

).

11

Hence

−1 + 2z1 + 2z2 + 2z3 + 2z4 + 2z5 = 0.

This sits within the outer trianglar convex set, with

z6 = u0(

[

x1

x2

]

t

[

0
−1

]

), z7 = u4(

[

x1

x2

]

t

[

1
1

]

),

z8 = u0(

[

x1

x2

]

t

[

−1
0

]

).

And so

−1 + 2z1 + 2z2 + 2z3 + 2z4 + 2z5 − 10z6 − 10z7 − 10z8 = 0.

As above, this can be simplified.

12

2.4 Proof of the construction algorithm

The proof is by induction on the list of input space hyperplanes. The “0th” hyperplane

(none at all) corresponds to the constant term which was chosen to give the right answer

inside the inner-most convex set. Now assume the cube-plane equation is correct for

hyperplanes H1, . . ., Hk−1. By choosing the orientation outward, all regions in the negative

half-space of Hk still give the correct response since the new term, skakyk, is zero there.

But in the postive half-space of Hk, the equation is positive if that half-space is Black or

negative if it is White. By Rule 1 the choice of the sign, sk, matches the requirement.

Further, the construction of Ak assures that, for yk = 1, the new term by itself exceeds the

rest of the equation for all possible values of y1, . . ., yk−1. Hence induction is complete.

2.5 Optimality of the constructive solution

Theorem 1. The solution above is the mini-max solution in the sense that it maximizes

the minimal distance from the cube-plane to each of the vertex sets F and G.

Proof. The most general cube-plane may be put into the form

1 + s1c1y1 + s2c2y2 + . . . + smcmym = 0

where the si are the signs as above and the ci are non-negative and yet to be determined.

Since this plane must separate vertices, it follows that the signs si must be the same

as those determined by the construction algorithm above. By elementary methods, one

calculates that the directed distance from a point (b1, b2, . . . , bm) in cube-space and the

plane is given by

dd =
s0 + s1c1b1 + s2c2b2 + . . . + smcmbm

√

c2
1 + c2

2 + . . . + c2
m

.

For a given set of coefficients ci, the nearest points to the plane are those that nu-

merically minimize the numerator. Also note that this directed distance changes sign in

concert with the signs si. It follows that the candidates for the nearest points can be

reduced to those whose coordinates bk are 1 when the sign sequence sk switches and the

other coordinates for the same sign as sk are zero. The list can further be reduced by

symmetries. When two coordinates can be interchanged and still remain in the same color

group, those coordinates are symmetric.

13

As a consequence, the minimizing vertices give rise to these directed distances (with

denominator surpressed)
s0

s0 + s1c1

s0 + n1s1c1 + sn1+1cn1+1

. . . .

The first sign change is between s0 and s1. Then after n1 instances of the sign s1, the next

change is sn1+1 and so on.

Now we seek to maximize the minimum of these numbers. Since 1 = |s0| is among

them, it will not be possible to chose the ci so the minimum exceeds 1. But on the other

hand, neither can the maximum of the minimum exceed 1. In fact, by equating all these

expressions, there results a solvable system which must be the unique mini-max solution.

But this is equivalent to the way the coefficients are chosen in the construction algorithm.

§3 Conclusions

We have presented a simple algorithm capable of computing all free parameters (weights

and thresholds) of a two-layer perceptron whose separating hyperplane (cube-plane in

the output cube-space) implements a CoRD decision region in input space. We have also

proved that this algorithm yields the best possible hyperplane, in the sense that it computes

the cube-plane that maximizes its minimal distance from vertex subsets F and G in the

cube-space.

References

[1] J. Makhoul, A. El-Jaroudi, R. Schwartz, “Formation of disconnected decision

regions with a single hidden layer,” Proceedings of the International Joint

Conference on Neural Networks I, 455—460, IEEE TAB Neural Network

Committee (1989)

[2] R. McCurley, K. Miller, R. Shonkwiler, “Classification Power of Multiple-

layer Artifical Neural Networks,” SPIE 1990, Technical Symposium on Op-

tical Engineering and Photonics in Aerospace Sensing; Program on Opti-

cal/Neural Image and Information Processing Vol. 1294, 577-587 (May 1990)

14

[3] P. Rujan, M. Marchand, “A Geometric Approach to Learning in Neural Net-

works,” Proceedings of the International Joint Conference on Nerual Net-

works II, 105—109, IEEE TAB Neural Network Committee (1989)

[4] R. Shonkwiler, “Separating the Vertices of N-Cubes by Hyperplanes and

its Application to Artificial Neural Networks.” Transactions on Neural Net-

works, Vol. 4, No. 2, 343-347 (1993).

[5] A. Wieland, R. Leighton, “Geometric Analysis of Neural Network Capabil-

ities,” Proceedings of the Second IEEE International Conference on Nerual

Networks III, 385—392, IEEE Computer Society (1988)

15

