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Abstract
We obtain a new sufficient condition that a region be classifiable by a 2-layer

feed-forward net using threshold activation functions. Briefly, it is either a convex
polytope, or that minus the removal of convex polytope from its interior, or that
minus a convex polytope from its interior, or ... recursively. We refer to these
sets as convex recursive deletion regions. Our proof of implementability exploits
the equivalence of this problem with that of characterizing two set partitions of
the vertices of a hypercube which are separable by a hyperplane for which we also
obtain a new result.

§1 Introduction

By an (n-input) neuron N we mean a device capable first of forming the weighted sum σ =

Σxiwi of its inputs, x1, . . . , xn, with weights w1, w2, . . . , wn, and second of thresholding

the resultant sum with a given value θ to produce an output: y = 0 if σ < θ or y = 1

if σ ≥ θ. Mathematically such a neuron evaluates the function y = sθ(x ·w) where sθ(·)

is the step function (or hard limiter) with threshold θ, and σ = x · w is the dot product

between the input vector x = (x1, . . . , xn)t and weight vector w = (w1, . . . , wn)t.

With each n-input neuron there is associated a unique oriented hyperplane Hw,θ of

n-dimensional Euclidean space Rn given by

Hw,θ = {x : x ·w = θ}

whose positive side is in the direction w and whose distance from the origin is d = |θ|/‖w‖.

Hw,θ decomposes Rn into two half-spaces, H1
w,θ = {x : x ·w ≥ 0} and H0

w,θ = {x : x ·w <
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0}, and is the boundary of both. The hyperplane itself belongs fully to the positive half

space. The output of the neuron is 1 for an input x if and only if x ∈ H1
w,θ. Since the

solutions x to the inequality x ·w ≥ θ are invariant under its multiplication by a positive

constant, distinct neurons (their weights and thresholds differing by a positive multiple)

may be associated with the same half-space. But in fact this may be used to advantage

by allowing scaling of the weights or threshold as necessary to meet implementation re-

quirements. An artificial Neural Network consisting of a single such neuron is known as a

Perceptron, [2], [5].

By an (m-neuron) layer Ln of n-input neurons we mean a listN1, . . . ,Nm of m neurons

defined over the same set of n inputs. Let neuron Nj have threshold θj and weight vector

wj = (w1
j , . . . , w

n
j )t, j = 1, . . . ,m, that is wij is the weight connecting the ith input to the

jth neuron. Let W be the n×m matrix whose m columns are the n-vectors wj . Then the

m-dimensional vector of weighted sums σ̄ is given by the matrix product

σ̄t = xtW

and the m-dimensional vector output of the layer is given by

y = Sθ(x
tW ) = (sθ1 (xtw1), . . . , sθm(xtwm))t.

(The last member defines Sθ(·).) Each component yj of y is either 0 or 1 depending on the

output of the jth neuron and so the possible outputs are the vertices of the m-dimensional

unit cube Qm,

Qm = {(y1, . . . , ym) : yj ∈ {0, 1}, 1 ≤ j ≤m}.

For a layer of n-input neurons, define the function q : Rn → Qm by

q(x) = Sθ(x
tW ).
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Fig. 1a. network Fig. 1b. input space

Fig. 1c. 3-cube representation

Since the m-cube has exactly 2m vertices, many inputs x will have the same q value. Given

a vertex y ∈ Qm, the yth atom or cell ay ⊂ Rn is the inverse image

ay = {x ∈ Rn : q(x) = y}.

Each such atom is the intersection of half-spaces,

ay =

m⋂
j=1

H
±j
wj ,θj

,

where ±j = 1, if yj = 1, and ±j = 0, if yj = 0. Therefore each atom is a convex polytope

or the empty set. The set of all (non-empty) atoms {ay : y ∈ Qm} forms a partition of

Rn into mutually exclusive, exhaustive convex polytopes. Atoms may be empty, bounded,

3



unbounded, open, closed, or contain only part of their boundary. In general there must

necessarily be empty atoms. Fig. 1 illustrates these concepts for a 2-input 3-neuron

example.

Now let the output y of the layer L1
n be taken as the input to a second layer L2

m

consisting of a single m-input neuron O with weight matrix (vector) U and threshold η.

We will refer to such a two layer feed forward net as a Two-layer Perceptron. As above, O

corresponds to an m-dimensional hyperplane KU,η which exists along with the hypercube

Qm. The two may intersect. In the event that they do, the vertices of the cube are

partitioned into two disjoint sets,

F = K1
U,η ∩Qm, and G = K0

U,η ∩Qm.

In turn, the set of vertices F correspond to a set of atomic convex regions of input space;

let

F =
⋃

y∈F

ay ⊂ Rn.

We say the region F is implemented by the two layer net L1
n and L2

m because the output

of neuron O is 1 if and only if x ∈ F ; see Fig. 2. (Note in general only 7 regions result

from the intersection of 3 lines in the plane while there are 8 vertices of the 3-cube. Vertex

E in the figure is a “don’t care” as it corresponds to no actual region.)

Fig. 2a. sum of atomic regions F Fig. 2b. corresponding cube vertices
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Alternatively such a region F may be referred to as a region classifiable by a Two-

layer Perceptron. The Two-layer Perceptron classification problem is that of finding a

characterization of those regions of n-dimensional space which can be implemented by a

two layer neural net. As we’ve seen, such a collection F of convex polytopes arising from

the decomposition of the input space Rn by hyperplanes will be two-layer classifiable if and

only if their corresponding set of vertices in net-space can be separated by a hyperplane

from the vertices corresponding to the complementary region to F .

The complete solution to the Two-layer Perceptron classification problem is not known.

However it is known that a region which is the arbitrary union of convex polytopes can be

classified by three layer net, [2], and as a result there has been less interest in the two layer

problem. Nevertheless there continues to be work done on the two layer problem [3],[7],[8],

culminating in a body of known sufficient conditions.

(a) decided by main theorem (b) decided by main theorem

(c) not decided by main theorem

Fig. 3. Regions implementable by a 2-layer net
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In this paper we give new sufficient conditions on a region in order that it be 2-layer

implementable. These conditions subsume all those known to us. The test is easy to apply

to two dimensional regions given graphically and many interesting regions are decided by

the conditions; see fig. 3. We obtain this result as an application of a new sufficient

condition for the hypercube separation problem (Main Lemma §3).

§2 CoRD Regions.

Let C1, C2, . . . , Cp be a nest of convex polytopes

C1 ⊃ C2 ⊃ . . . ⊃ Cp. (2.1)

We assume p is even, otherwise put Cp+1 = ∅. By a convex recursive deletion, or CoRD,

region we mean a set S of the form

S = (C1 ∩C
′
2) ∪ (C3 ∩ C

′
4) ∪ . . . ∪ (Cp−1 ∩C

′
p). (2.2)

where C ′ denotes the complement of the region C . We allow the possibility that C1 = Rn.

Some examples of CoRD regions in R2 are illustrated in fig. 3a,b above. The representation

is not unique as seen by the example illustrated in fig. 4. Nevertheless our arguments follow

from the CoRD representation and so the results apply to any region capable of at least

one such representation.

Theorem. The class of CoRD regions is closed under complementation and closed under

intersection with convex polytopes.

Proof. Let S be as in (2.1) and (2.2) and consider the complement

S′ = [(C1 ∩ C
′
2)∪ . . . ∪ (Cp−1 ∩C

′
p)]
′ =

(C ′1 ∪C2) ∩ (C ′3 ∪C4) ∩ . . . ∩ (C ′p−1 ∪ Cp)
(2.3)

In general suppose for sets A, B, C , and D that A′ ⊂ C ′ and B ⊃ D, then

(A′ ∪B) ∩ (C ′ ∪D) = (A′ ∩ (C ′ ∪D)) ∪ (B ∩ (C ′ ∪D))

= A′ ∪ (B ∩C ′) ∪D.
(2.4)
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(C1 ∩C ′2) ∪C3 = C1 ∩K ′

The latter is a reassociation of the first member. Since C ′1 ⊂ C ′3 and C2 ⊃ C4, the first

two terms of the right member of (2.3) becomes

[C ′1 ∪ (C2 ∩ C
′
3) ∪C4] ∩ (C ′5 ∪C6) ∩ . . . ∩ (C ′p−1 ∪Cp). (2.5)

Now taking A′ = C ′1 ∪ (C2 ∩C ′3), B = C4, C = C5, D = C6, it is easy to see that A′ ⊂ C ′

and B ⊃ D so that the reassociation can continue; (2.5) becomes

[C ′1 ∪ (C2 ∩ C
′
3) ∪ (C4 ∩C

′
5) ∪ C6] ∩ . . . ∩ (C ′p−1 ∪Cp).

Continuing inductively we obtain

(C ′1 ∪C2) ∩ (C ′3 ∪ C4)∩ . . . ∩ (C ′p−1 ∪Cp)

= C ′1 ∪ (C2 ∩ C
′
3) ∪ (C4 ∩C

′
5) ∪ . . . ∪Cp

= (Rn ∩C ′1) ∪ (C2 ∩ C
′
3) ∪ . . . ∪ (Cp ∩ ∅

′)

which is in the form of a CoRD region. Next let S be a CoRD region as above and C a

convex polytope. Then

C ∩ S = [(C1 ∩C) ∩C ′2] ∪ . . . ∪ [(Cn−1 ∩ C)∩ C ′n].
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Since Ci ∩ C is also a convex polytope, it follow that C ∩ S is a CoRD region. This

completes the proof.

Definition. Let C denote the intersection of all classes P of subsets of input space, Rn,

containing the convex polytopes and closed under complementation and intersections with

convex polytopes.

From what we’ve done so far it follows that the class of CoRD regions contains C.

Actually the two are the same.

Theorem. The class of CoRD regions is identical with C.

Proof. It remains to show that the CoRD regions are contained in C. We do this by

showing that any class P containing the convex polytopes and closed as required, contains

all CoRD regions. So let S be a CoRD region

S = (C1 ∩ C
′
2) ∪ . . . (Cp−1 ∩C

′
p).

It is easy to see that Cp−1∩C ′p ∈ P . By closure under complementation, (Cp−1∩C ′p)
′ ∈ P ,

therefore Cp−2 ∩ (Cp−1 ∩ C ′p)
′ ∈ P . Again by complementation, C ′p−2 ∪ (Cp−1 ∩C ′p) ∈ P .

Next Cp−3 is a convex polytope and contains (Cp−1 ∩ C ′p), therefore

Cp−3 ∩ [C ′p−2 ∪ (Cp−1 ∩ C
′
p)] = (Cp−3 ∩C

′
p−2) ∪ (Cp−1 ∩C

′
p) ∈ P .

Continue by induction obtaining S ∈ P .

Remark It is shown in [4] that the sets of C are 2-layer implementable by directly con-

structing an implementing network.. In the next section we show that the class of CoRD

regions is 2-layer implementable by considering their representing hypercubes.

§3 Cubes Corresponding to CoRD Regions

By the jth (m−1 dimensional) face Rij , i = 0, 1 of the cube Qm we mean the set of vertices

of Qm whose jth component is i, j = 1, . . . ,m. The opposite face is Ri
′

j where i′ = 1 if

i = 0 and i′ = 0 if i = 1.
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More generally, by the facet Ri1...irj1...jr
we mean the vertices (b1, b2, . . . , bm) of Qm such

that bjk = ik, k = 1, . . . , r. Evidently Ri1...irj1...jr
is itself an m− r dimensional cube.

Definition. Let A and B be two sets of vertices of a cube Qm. We say these vertices

can be separated if there exits an oriented hyperplane K in m-dimensional space such that

A ⊂ K1 and B ⊂ K0.

Main Lemma. Let A and B be separable sets of vertices of an m − 1 face Rij of an m

cube Qm. If C is any subset of the opposite face Ri
′

j , then A ∪ C and B are separable

subsets of Qm.

Proof. Let co(A) and co(B) denote the convex hulls of the sets A and B respectively.

Then co(A), co(B) ⊂ Rij and

co(A) ∩ co(B) = ∅

because the sets A and B can be separated. Let co(A∪C) denote the convex hull of A∪C .

Then co(A ∪ C) ∩ Rij = co(A) and therefore co(B) ∩ co(A ∪ C) = ∅. It follows by the

Hahn-Banach Theorem, [1,p47], that A ∪C and B can be separated.

Remark In particular, if either A or B is empty, then the result holds (trivially if B is

empty).

Main Theorem. Let S be a CoRD region of input space, then S is two layer imple-

mentable.

Proof. Let S be a CoRD region, (2.1), (2.2), where i0 = 0 and

Ck =

ik⋂
j=ik−1+1

H
±j
j , k = 1, 2, . . . , p,

and Qm the corresponding hypercube of m = ip dimensional space. Let F be the set of

vertices corresponding to S as above, i.e.

F = {y ∈ Qm : q(y) ⊂ S, q(y) 6= ∅}
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and let

G = {y ∈ Qm : q(y) ⊂ S′, q(y) 6= ∅}

Let E be the set of vertices of Qm corresponding to no convex polytope of input space. We

show that F and G are separable by induction on the sequence of hyperplanes. There are

two cases, for odd k, Ck is an included polytope in that (Ck ∩C ′k+1) ⊂ S. For an even k,

Ck is an excluded region in that (Ck−1 ∩C ′k) ⊂ S. We may start without loss of generality

with the including case, i.e. with C1 6= Rn.

Now C1 ⊂ H±1
1 and S ⊂ C1, therefore, if ±1 = 1 say, then y1 = 1 for all vertices

y ∈ F , i.e. F ⊂ R1
1. Hence each vertex of the opposite face, R0

1, is either in G or in E. It

follows by force of the lemma that if the sets

F1 = F ∩ R1
1 (= F ) and G1 = G ∩R1

1

are separable in the m − 1 dimensional face R1
1, then F and G will be separable in Qm.

Let Qm−1 be the m− 1 dimensional hypercube consisting of the face R1
1, i.e.

{1} ×Qm−1 = R1
1.

Note that every vertex of Qm−1 corresponds to a convex polytope contained in H±1
1 .

For induction assume the theorem is true provided it can be shown that in the m− j

dimensional cube, Qm−j , 1 ≤ j < m,

{±1} × . . . × {±j} ×Qm−j = R
±1...±j
1,...,j ,

the vertices

Fj = F ∩R
±1...±j
1,...,j and Gj = G ∩R

±1...±j
1,...,j

can be separated. The vertices of Qm−j correspond to convex polytopes of input space

lying within I = H±1
1 ∩ . . . ∩H

±j
j , i.e. if ym−j ∈ Qm−j then q(±1, . . . ,±j,ym−j) ⊂ I.
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Let the next hyperplane Hj+1 be an edge of Ck, i.e. ik−1 + 1 ≤ j + 1 ≤ ik. Then

I ⊂ Ck−1. There are two cases, k odd or even. Suppose the former, then Ck is an including

region. Since Ck ⊂ H
±j+1

j+1 , it follows that every vertex y of Qm corresponding to a polytope

of S contained in I will in fact be contained in Ck and must have its (j + 1)st component

equal to ±j+1. Such a vertex will belong to the 1-face of Qm−j whose first components are

also ±j+1. Therefore the opposite face, Π
±′j+1

1 of Qm−j , consists of vertices corresponding

either to convex polytopes contained in Ck−1 but not in Ck and hence are G type vertices,

or to no convex polytope of input space, i.e. E type vertices. Hence, by the lemma, if the

m− j − 1 dimensional cube Qm−j−1,

{±j} ×Qm−j−1 = Π
±j+1

1

is separable, then so is Qm. Note that the vertices of Qm−j−1 correspond to convex

polytopes contained in I ∩H
±j+1

j+1 . Induction is complete in this case.

Now suppose that k is even, then Ck is an excluding region. Since Ck ⊂ H
±j+1

j+1 , each

vertex of the 1-face Π
±′j+1

1 corresponds either to a convex polytope contained in Ck−1, an

including region, but not in Ck or to no region of input space. Hence such a vertex is

either an F or an E vertex. Therefore again if the m− j − 1 dimensional cube Qm−j−1,

{±j} ×Qm−j−1 = Π
±j+1

1

is separable, then so is Qm. Note that the vertices of Qm−j−1 correspond to convex

polytopes contained in I ∩H
±j+1

j+1 . Induction is complete in this case.

Arriving by finite induction to the last hyperplane Hip , note that the resulting cube

Qm−ip = Q0 is a single point. If the final polytope Cp is including, then this vertex is an

F type, otherwise it is a G type. Either way, by the Remark following the Main Lemma

above, this 0 dimensional facet is separable and the proof is complete.

We gather together some facts which emerged in the course of the above proof.
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Corollary A. Running through the indices in their natural order 1,2,. . ., the sequence of

facets

R
±′1
1 , R

±1±
′
2

1,2 , . . . , R
±1±2...±ip−1±

′
ip

1,2,...,ip−1,ip
,

have the properties: (assuming C1 6= Rn)

(a) R
±1...±j−1±

′
j

1,...,j−1,j is of dimension m− j, and

(b) all veritices of this facet are G’s or E’s if ik−1 < j ≤ ik and k is odd and are F ’s or

E’s if k is even.

If C1 = Rn then the above holds with even and odd interchanged.

This is illustrated in the cube diagram accompanying fig. 2 where S = H1
1 ∩H

0
2 ∩H

0
3

and R0
1 consists of G’s and an E, R1,1

1,2 consists of F ’s, and R1,0,1
1,2,3 is an F .

Corollary B. Let A andB be a two set partition of the vertices of anm-cube Qm. Suppose

there exists a permutation π of the first m natural numbers and a choice ±πj = 0 or 1, for

j = 1, . . . ,m, so that for each subfacet Qm−j = R
±π1±π2 ...±πm
πiπ2...πj of the chain

Qm ⊃ R
±π1
π1 ⊃ R

±π1±π2
π1π2 ⊃ . . . ⊃ R

±π1±π2 ...±πm
π1π2...πm

either

Qm−j ⊂ A or Qm−j ⊂ B.

Then A and B can be separated by a hyperplane.

Proof. This follows by the construction in the proof of the Theorem.
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