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We estimate the Hausdorff measure and dimension of Can-

tor sets in terms of a sequence given by the lengths of the

bounded complementary intervals. The results provide the

relation between the decay rate of this sequence and the di-

mension of the associated Cantor set.

It is well known that not every Cantor set on the line is an

s-set for some 0 ≤ s ≤ 1. However, if the sequence associated

to the Cantor set C is non-increasing, we show that C is an

h-set for some continuous, concave dimension function h. We

construct the function h from the sequence associated to the

set C.

1. Introduction

A Cantor set is a compact, perfect, totally disconnected subset of the real
line. In this article we will consider only Cantor sets of Lebesgue measure
zero. The complement of a Cantor set is a countable union of disjoint open
intervals. We will use the term gap for any bounded convex component of
the complement of a Cantor set.

Every Cantor set is completely determined by its gaps. Since the gaps
are disjoint, the sum of their lengths equals the diameter of the Cantor set.

There is a natural way to associate to each summable sequence of positive
numbers a unique Cantor set having gaps with lengths corresponding to the
terms of the sequence. In this correspondence the order of the sequence is
important. Different rearrangements could correspond to different Cantor
sets. On the other hand if two sequences correspond to the same Cantor
set, one is clearly a rearrangement of the other.

In the first part of this paper we will concentrate on finding the Hausdorff
measure of a Cantor set in terms of the decay of the sequence of the lengths
of the gaps. In particular we will show that the Hausdorff dimension depends
totally on this behavior.

We establish an equivalence relation between sequences and show that
Cantor sets in the same equivalence class have the same dimension.

Since the Cantor set depends on the order of the sequence, one expects
that the dimension of the resulting set also depends on the order. This
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is true, and moreover, the arrangement of the sequence in monotone non-
increasing order yields the Cantor set with the largest dimension out of all
Cantor sets with the same set of gap lengths (see also [BT54]).

Let 0 ≤ s ≤ 1. An s-set is a set on the line of Hausdorff dimension s, and
whose Hausdorff s-measure is finite and positive. Let h be a non-decreasing,
right-continuous function taking the value zero at the origin. The Hausdorff
h-measure Hh is defined in the same way as the Hausdorff s-measure but
replaces the function xs by h(x), (see [Rog98], [Hau19] and equation 1).
A set A ⊂ IR is an h-set, if 0 < Hh(A) < +∞.

Given 0 ≤ s ≤ 1, it is not difficult to construct a Cantor set that is an s-
set. It is also known that not every Cantor set of dimension s is an s-set. So
should a set of dimension s, but having Hausdorff measure zero or infinity,
be considered s-dimensional?

Hausdorff proposed the Hausdorff h-measure to further investigate non
s-sets. In this paper we prove that every Cantor set C on the line associ-
ated to a sequence of non-increasing positive real numbers, is an h-set for
some continuous concave function h. We explicitly construct h in terms
of the sequence that defines the Cantor set. In other words, for every se-
quence, the set with the largest Hausdorff dimension, is also an h-set for
some appropriate function.

The study of Cantor Sets through the decay of the complementary inter-
vals was initiated by Borel in 1948 [Bor49] and continued by Besicovitch
and Taylor in their seminal paper [BT54]. The present paper explores this
subject further and extends some of their results.

On the other hand, Tricot in [Tri81] and Falconer in [Fal97] obtain results
associating properties of the gaps of a Cantor Set with its box dimension.
(see also [Tri95]). In [CMPS03] the particular case of the sequence xp was
thoroughly analyzed.

The general organization of the paper is as follow. In Section 2, we
describe the construction of a Cantor set from a given sequence and we
show that every Cantor set can be constructed in this way. In Section 3, we
define a partial order between sequences and we prove that the dimension
of the associated Cantor sets are consistent with this order. In Section 4
we introduce certain constants associated to a sequence and we provide the
relationship of these constants to the dimension of the associated Cantor
set. The main results of this section are summarized in Theorem 4. Finally
in Section 5 we prove the fundamental result that every Cantor set is an
h-set for some dimension function h. We construct this function from the
sequence that defines the Cantor set.

1.1. Notation. We recall the definitions of Hausdorff measure and dimen-
sion.
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Definition Let A ⊂ IR and α > 0. For δ > 0 let

Hα
δ (A) = inf

{∑
(diam(Ei))

α : Ei open, ∪ Ei ⊃ A,diam(Ei) ≤ δ
}

.

Then, the α-dimensional Hausdorff measure of A, Hα(A), is defined as

Hα(A) = lim
δ→0

Hα
δ (A),

and the Hausdorff dimension of A is,

dim(A) = sup{α : Hα(A) > 0}.

If h is a non-decreasing, right-continuous function such that h(0) = 0, the
Hausdorff h-measure is defined as
(1)

Hα(A) = lim
δ→0

inf
{∑

h(diam(Ei)) : Ei open, ∪ Ei ⊃ A,diam(Ei) ≤ δ
}

.

It can be shown ([Rog98]), that if in the definition of the Hausdorff measure
the elements of the coverings are chosen to be closed sets, or Borel sets, the
resulting measure is the same.

Throughout the paper, we will use the notation dim(A) for the Hausdorff
dimension of a set A, since it is the only concept of dimension that we are
considering.

2. Construction of Cantor sets

In what follows we will assign to each summable sequence of positive num-
bers a unique Cantor set with gaps whose lengths correspond to the terms
of this sequence. Let a = {ak} be a sequence of real numbers with an > 0
for all n = 1, 2, . . . and

∑
an = Sa < ∞. Consider a binary tree where the

nodes are labeled with the natural numbers from left to right and from top
to bottom (i.e. at level zero there is only one node with label 1, at level
1 there are two nodes with labels 2 and 3, and so on, at level k there are
2k nodes with labels 2k, 2k + 1, . . . , 2k+1 − 1). If n ∈ IN, denote by Tn

the subtree with head n, i.e. T1 is the whole tree, T2 and T3 are the left
and right subtrees associated to nodes two and three, and so on. Now we
construct a Cantor set in the interval I = [0, Sa] in the following way: at
step one we remove an open interval of length a1 from I creating two closed
subintervals I1

0 and I1
1 of lengths |I1

0 | and |I1
1 | given by

|I1
0 | =

∑

k∈T2

ak and |I1
1 | =

∑

k∈T3

ak.

At step k we have 2k intervals Ik
0 , . . . , Ik

2k−1
. From Ik

ℓ we remove one

open interval of length a2k+ℓ creating the closed intervals Ik+1
2ℓ and Ik+1

2ℓ+1 of



4 C.CABRELLI, F.MENDIVIL, U.MOLTER, AND R.SHONKWILER

lengths

|Ik+1
2ℓ | =

∑

k∈T
2k+2ℓ

ak and |Ik+1
2ℓ+1| =

∑

k∈T
2k+2ℓ+1

ak.

If Fk = ∪2k−1
ℓ=0 Ik

ℓ , then Fk is closed and Fk ⊃ Fk+1 for all k. Define Ca = ∩Fk.
We will call Ca the Cantor set associated with the sequence a and gak

will
denote the gap of Ca associated with the term ak. In particular, |gak

| = ak.
If g and g′ are gaps, we will say that g < g′ if all x ∈ g, y ∈ g′ satisfy that
x < y. Given a sequence a and its associated Cantor set Ca, we define a cut
of Ca to be a partition of IN = L ∪ R such that

gaℓ
< gar for all ℓ ∈ L, r ∈ R.

We will allow L or R to be empty.

Lemma 1. Every point in Ca defines a cut and conversely, every cut of Ca

defines a unique point of Ca.

Proof. For x ∈ Ca define L = {n : gan ⊂ [0, x]}. For the converse, if (L,R)
is a cut, then let

s = sup{d ∈ IR : d is a right endpoint of some gap gan , n ∈ L}

and

t = inf{c ∈ IR : c is a left endpoint of some gap gam , m ∈ R}.

Clearly s ≤ t. If s < t then [s, t] ⊂ Ca, a contradiction. �
Let Ca and Cb be Cantor sets associated to sequences a and b respectively.

As a result of the definition of Ca and Cb it is clear that if for some n,m ∈ IN

gan < gam , then gbn < gbm .

This implies that if (L,R) define a cut of Ca, it also defines a cut of Cb.
Also, if x ∈ Ca is defined by a cut (L,R), then

x =
∑

n∈L

|gan |.

3. Equivalences of Cantor sets

The previous considerations allow us to define a natural map πab from Ca

into Cb, that assigns to the point x ∈ Ca the point y ∈ Cb defined by the
same cut associated to x, i.e. if La(x) = {n ∈ IN : gan ⊂ [0, x]}, then

y = πab(x) =
∑

n∈La(x)

|gbn |.
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Observe that y can be written also as

y =
∑

n∈Lb(y)

|gbn | with Lb(y) = {n ∈ IN : gbn ⊂ [0, y]}.

The map πab : Ca → Cb is one-to-one and onto. It can be extended
linearly to a one-to-one map from [0, Sa] into [0, Sb]. For, we map the gap
gan linearly into the gap gbn , i.e. if gan = (c, d) and gbn = (c′, d′), then

πab(x) =
c′(x − d) − d′(x − c)

c − d
, for x ∈ (c, d).

Note that π is an increasing function, since given x, y ∈ Ca with x < y, we
have

πab(y) − πab(x) =
∑

n∈La(y)

bn −
∑

n∈La(x)

bn

=
∑

n∈(La(y)\La(x))

bn =
∑

{n:gan⊂[x,y]}

bn > 0.

This shows that πab is increasing on Ca. This implies that πab is increasing
on [0, Sa]. Since πab : [0, Sa] → [0, Sb] is onto, it must be continuous and
consequently π−1

ab : [0, Sb] → [0, Sa] is also continuous.
We have proved the following proposition.

Proposition 1. If Ca and Cb are the Cantor sets associated to arbitrary
sequences a and b, then the map πab : [0, Sa] → [0, Sb] is increasing, one to
one, onto and bi-continuous. Furthermore πab(Ca) = Cb.

Definition 1. Given two summable sequences a and b of positive terms, we
will say that a is of lower order than b,

a ≺ b if there exists k > 0 such that
an

bn
< k, ∀ n ∈ IN.

If a ≺ b and b ≺ a we will say that a and b are of the same order and we
will write a ∼ b. Note that

a ∼ b ⇐⇒ k1 <
an

bn
< k2, ∀ n ∈ IN,

for some constants k1, k2 > 0.

We will need the following result which appeared in [CMPS03].

Proposition 2 (CMPS03). Let a = {ak}k∈IN be defined by ak =
(

1
k

)p
,

p > 1. Then Ca is a 1
p -set, precisely,

1

8

(
2p

2p − 2

) 1
p

≤ H
1
p (Ca) ≤

(
1

p − 1

) 1
p
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and furthermore

dim Ca =
1

p
.

Theorem 1. Let Ca and Cb be Cantor sets associated to the sequences a
and b. Then we have

1) if a ≺ b then dim(Ca) ≤ dim(Cb), in particular, if a ∼ b then dim(Ca) =
dim(Cb),

2) there exist sequences a = {an} and b = {bn} such that lim inf an
bn

= 0,
and

dim(Ca) = dim(Cb).

Proof. For part (1), if a ≺ b, we will show that the map πba defined above
is Lipschitz. For given x < y, x, y ∈ Cb, then

πba(y) − πba(x) =
∑

{n:gbn⊂[x,y]}

an ≤ k
∑

{n:gbn⊂[x,y]}

bn(2)

= k(y − x).(3)

Then we have dim(Ca) = dim(πba(Cb)), and by an elementary property
of Hausdorff dimension we obtain dim(πab(Cb)) ≤ dim(Cb) proving (1).

For part (2), consider a sequence a = {an} such that for some fixed p > 1

lim
n→∞

an
1
np

= 0

and

lim
n→∞

1
nq

an
= 0, for all q > p.

Then the maps

π1 : C 1
np

→ Ca(4)

π2 : Ca → C 1
nq

(5)

are Lipschitz using a similar argument as in the first part. This implies

1

q
≤ dim(Ca) ≤

1

p
, for all q > p.

Then dim(Ca) = 1
p . �

3.1. Example. Let x > 2 and let λ = {λn} and γ = {γn} be two sequences
defined as follows:

λn =

(
1

[xk] + j

)p

γn =

(
1

n

) p log x
log 2

=

(
1

x
log n
log 2

)p

,

where n = 2k + j, 0 ≤ j ≤ 2k −1, and [y] is the greatest integer smaller than
y.
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Then

1

2p
≤

(
1

1 + j/xk

)p

≤

(
xk

xk + j

)p

≤
λn

γn
≤ xp.

So we know that 1
2p ≤ lim inf λn

γn
≤ lim sup λn

γn
≤ xp, and hence γ ∼ λ

(compare [CMPS03]).

4. Computation of Hausdorff dimensions

In this section we will define some indices associated with a summable se-
quence. These numbers can be considered as a measure of the decay rate of
the sequence. We will then compare their values with the dimension of the
associated Cantor set.

We will denote by λp the sequence λp(n) = 1/np. Let us define now for a
sequence a = {an},

β(a) = inf{s : 0 < s, a ≺ λ1/s}

γ(a) = sup{s : 0 < s, λ1/s ≺ a},

δ(a) = inf{s : 0 < s ≤ 1,
∑

n

as
n < ∞},

An historical survey of various indices associated with the decay of gaps
(when an decreases) and the box dimension is given in Tricot, [Tri81], to-
gether with more complete results.

Theorem 2. With the above notation,

γ(a) = lim
− log(n)

log(an)
and β(a) = lim

− log(n)

log(an)
.

Proof. Let us call

A = lim
− log(n)

log(an)
and B = lim

− log(n)

log(an)
.

Let s < A, then s < − log(n)/ log(an) for sufficiently large n. For such n,
we then have (

1

n

)1/s

< an.

Thus, (1/n)1/s ≺ (an), and therefore, s ≤ γ(a). Thus, we know that A ≤
γ(a).

Conversely, suppose that s > A. Then

−
1

s
> lim

log(an)

log(n)
.
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Now this implies that there is some subsequence nk so that

−
1

s
>

log(ank
)

log(nk)
⇒

(
1

nk

)1/s

> ank
.

Thus, for all ǫ > 0 we know that

(
1

n

) 1
s
+ǫ

6≺ an, and therefore s + ǫ > γ(a), ∀ ǫ > 0, s > A.

Hence γ(a) = A.
The proof of β(a) = B is similar, but we give it for completeness.
For s > B we know that −1/s > log(an)/ log(n) for sufficiently large n.

For such n we have (1/n)1/s > an so that an ≺ (1/n)1/s which implies that
β(a) ≤ B.

Conversely, if s < B then there is some subsequence nk so that

−
1

s
<

log(ank
)

log(nk)
⇒

(
1

nk

) 1
s

< ank
.

Thus,

an 6≺

(
1

n

) 1
s
−ǫ

∀ ǫ > 0,

therefore an 6≺ (1/n)1/s, and hence B ≤ β(a). �
Note that out of the three constants defined at the beginning of this

section, only δ is invariant under rearrangements, whereas β and γ are not.
Therefore, since we know that for an = 1

np , rearrangements can indeed
change the dimension (see [CMPS03]), we have to discard the intuition
that δ(a) = dim(Ca).

Proposition 3. If a is a summable sequence of positive terms then

1) γ(a) ≤ dim(Ca) ≤ β(a).
2) γ(a) ≤ δ(a) ≤ β(a).
3) If a = {an} is monotone decreasing, then δ(a) = β(a).

Proof. Part (1) is a consequence of Theorem 1 and the definition of γ(a)
and β(a).

For part (2), choose s > 0 such that a ≺ λ1/s then for every n,

an ≤
c

n1/s
for some c > 0

then

as+ǫ
n ≤

c′

n(s+ǫ)/s
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which implies that s + ǫ ≥ δ(a) for all ǫ > 0 and then δ(a) ≤ β(a). Further-
more, for each ǫ ≥ 0 we have for every n:

c

n
1

γ(a)−ǫ

≤ an for some constant c

so ∑

n

aγ(a)−ǫ
n = +∞

which implies that δ(a) ≥ γ(a) − ǫ. Since ǫ is arbitrary, we conclude that
δ(a) ≥ γ(a). For part (3), since we already proved part (2), it only remains
to see that β(a) ≤ δ(a). If for some 0 < s ≤ 1,

∑
n as

n < +∞, then using the
monotonicity we conclude that

lim
n→∞

nas
n = 0,

and therefore n1/san < k for some positive constant k. This says that
a ≺ λ1/s which implies the result. �
Note. Part 3) of the preceding proposition has already been proved by
Tricot in [Tri81].

A consequence of the preceding proposition is that if a is a monotone non-
increasing summable sequence of positive terms and ã is any rearrangement
of a then β(a) = δ(a) = δ(ã) ≤ β(ã).

Another immediate consequence of the definition of γ(a) and β(a) is the
following property:

Property. Let a be any summable sequence of positive terms. If 0 < b <
β(a) then lim supn→∞ n1/ban = +∞, and if γ(a) ≤ b then lim infn→∞ n1/ban =
0

This property tells us that if we take a rearrangement ã of a monotone
non-increasing sequence a such that β(a) 6= β(ã), (hence β(a) < β(ã)), then

lim sup
n→∞

n1/β(a)ãn = +∞.

Using the previous observations, we can actually improve on part (1) of
Proposition 3:

Theorem 3. If a = {an} is a monotonic non-increasing summable sequence
of positive terms, and ã is a rearrangement of a, then dim(Cea) ≤ δ(a) =
β(a).

Proof. We will first provide an alternate proof of part (1) of the previous
proposition, for the monotone sequence a. This proof will then allows us to
deduce the desired property.

Let s > β(a) and let δ > 0 be given. Let n be so large that
∑∞

k=n+1 ak < δ.

Then the remaining intervals after the nth stage of construction, {Ek}
n+1
k=1 ,
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are all of length smaller than δ, and are therefore a δ-covering of Ca. Note
that these Ek are just some Ir

j defined in section 2. By Hölder’s inequality
and integral comparison, they satisfy

n+1∑

k=1

|Ek|
s ≤ (n + 1)1−s

(n+1∑

k=1

|Ek|
)s

≤ C(n − 1)1−s
( ∞∑

k=n+1

(
1

n
)

1
s

)s

≤ C
( s

1 − s

)s(
1 +

1

n

)1−s
.

Therefore, for all s > β(a) the Hausdorff measure Hs
δ(Ca) < c( s

1−s )s. Hence

dim(Ca) ≤ s. Since this is true for all s > β(a), we have

dim(Ca) ≤ β(a).

Let now ã = {ãn} be a rearrangement of a. Then for all δ > 0 let n again
be so large that

∑∞
k=n+1 ak < δ. There exists an m ≥ n such that

{a1, a2, . . . , an} ⊂ {ã1, ã2, . . . , ãm}.

So, for some i1, . . . , in ∈ {1, . . . ,m} we have ãi1 = a1, . . . , ãin = an. Let
Ei1, Ei2 , . . . , Ein+1 be the remaining intervalas due to ãi1 , . . . , ãin in the

construction of Cea. Then ∪n+1
j=1Eij is a covering of Cea and

n+1∑

j=1

|Eij | =

∞∑

k=n+1

ak < δ.

This implies that |Eij | < δ and hence {Eij} is a δ-covering of Cea. Using again
the integral approximation as above, we obtain that dim(Cea) ≤ β(a). �
4.1. Monotone non-increasing sequences. For a non-increasing sequence
a, we already know that δ(a) = β(a). In addition, by Proposition 3, we know
that

γ(a) ≤ dim(Ca) ≤ β(a).

Therefore, if

lim(
log(an)

log n
) = ℓ, then we have dim(Ca) = −

1

ℓ
.

This result extends the result of Falconer [Fal97] (pg.55). Moreover,
Falconer shows that if the limit does not exist then the upper and lower
box-dimensions disagree.

In this case however, we still want to determine the dimension of Ca. For
this, we introduce two new constants associated to the sequence a.

In fact, these two constants are related to the behavior of the tail of the
sequence. Let us call rn =

∑
j≥n aj. Using an argument analogous to the
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one used in the proof of Theorem 3, one can see that the s-Hausdorff measure
of Ca is bounded by

Hs(Ca) ≤ c lim n
(rn

n

)s
.

We therefore define the following two constants, associated to the sequence
a:

τ(a) = inf{s > 0 : lim n
(rn

n

)s
< +∞},

α(a) = lim αn where n
(rn

n

)αn

= 1.

Note. The constant α associated to a monotone sequence a was introduced
in [BT54]. In fact they show that dim(Cã) ≤ α(a), where ã is any re-
arrangement of a.

It is interesting to remark, that lim αn was introduced already in 1948 by
Emil Borel with the name of logarithmic density.

From results in the seminal paper by Besicovitch and Taylor [BT54], one
can conclude that for a monotonic non-increasing sequence dim(Ca) = α(a)
(see [CHM03]), and that for each t and β such that 0 ≤ t ≤ β, there
is a monotone non-increasing sequence a = {an}, such that β(a) = β, and
α(a) = t. In our next proposition however, we show the surprising result that
if γ(a) is strictly smaller than β(a), then α(a) has a smaller than expected
bound.

Proposition 4. With the notation above, for every non-increasing sequence
a,

α(a) = τ(a) and α(a) ≤
γ(a)

1 − β(a) + γ(a)
.

Proof.
(
α(a) ≤ τ(a)

)

Let s > 0 be such that lim n
(

rn
n

)s
< +∞, then

n
(rn

n

)s
= n

(rn

n

)αn
(rn

n

)s−αn

=
(rn

n

)s−αn

So lim
(

rn
n

)s−αn < +∞. Since for each fixed k > 0, lim
(

rn
n

)−1/k
= +∞,

there must exists a subsequence αnk
such that

αnk
< s +

1

k
, for all k.

We have

α(a) = lim
n

αn ≤ lim αnk
≤ s,

and therefore α(a) ≤ τ(a).
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For the converse, τ(a) ≤ α(a), assume now that α(a) < τ(a), and consider
s, such that α(a) < s < τ(a). Let {ank

} be such that limk ank
= α(a) and

ank
< s for all k. Then

+∞ = lim
n

n
(rn

n

)s
= lim

k
nk

(
rnk

nk

)s

= lim
k

(
rnk

nk

)s−αnk

= 0

(since s − αnk
> c > 0 for some c and for all k). This contradiction shows

that α(a) = τ(a).

For the other inequality, note that if γ(a) = β(a), then γ(a)
1−β(a)+γ(a) = γ(a)

and there is nothing to prove. However, if γ(a) < β(a), then

γ(a)

1 − (β(a) − γ(a))
< β(a).

To show that α(a) satisfies the desired inequality, we prove that for each ε >

0, α(a) ≤ γ(a)+ε
1−(β(a)−γ(a)−ε) . For this, we will show, that for each ε > 0, there

is a subsequence {ank
}k of {an}n for which rnk

is at most O

(
1

nk

1−β(a)
(γ(a)+ε)

)
.

Fix β(a) − γ(a) ≥ ε > 0. Let us call γε = γ(a) + ε. From the definition
of γ(a), we immediately see that there is a subsequence nk so that ank

≤
1
nk

1/γε . This is the subsequence that we desire.

Since an is monotone, we can estimate rnk
from above. Fix nk. Define a

new sequence {bn}n in the following way:

bj =





aj for j ≤ nk,
(

1
nk

)1/γε
for nk ≤ j < ⌈n

β(a)/γε
k ⌉,

1
j
1/β(a)

for all larger j,

where ⌈x⌉ stands for the smallest integer that is larger or equal than x. So
we have that aj ≤ bj for all j, and therefore

∑
j≥nk

aj ≤
∑

j≥nk
bj .

We can estimate that

⌈n
β/γε
k ⌉∑

j=nk

bj =
⌈n

β(a)/γε
k ⌉ − nk

n
1/γε
k

∼ n
(β(a)−1)/γε
k for k large enough,

and, using an integral comparison, we see that

∑

j≥⌈n
β(a)/γε
k ⌉

bj = C
(
n

β(a)/γε
k

)(β(a)−1)/β(a)
.
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Since both of these terms are O(n
(β(a)−1)/γε
k ), we have that

α(a) ≤
γ(a) + ε

1 − (β(a) − γ(a) − ε)
for every ε. �

In [Tri95] it is proved that β(a) = lim− n
an

= lim αn. Proposition 4 above
shows that this is false for the lim. Moreover, we know that there are no
sequences a, with γ(a) < β(a) and

γ(a)

1 − β(a) + γ(a)
< dim(Ca) ≤ β(a).

So the question now is about the existence of a sequence a, such that

γ(a) ≤ dim(Ca) ≤
γ(a)

1 − β(a) + γ(a)
.

The next proposition answers this question completely and emphasizes the
asimetry between the lim and the lim.

Proposition 5. Let 0 < γ ≤ β ≤ 1 be given, and let

S = {a = {an},monotonic non-increasing such that γ(a) = γ and β(a) = β},

then for any number t, γ ≤ t ≤ γ
1−β+γ , there is a sequence a ∈ S such that

dim(Ca) = t.

Proof. Let 0 ≤ s ≤ 1, and define

f(s) =
γ(1 − sβ)

1 − β + γ(1 − s)
.

For each s we will construct a sequence a(s) ∈ S, such that dim(Ca(s)) =
f(s). Since f is decreasing, f(0) = γ

1−β+γ and f(1) = γ, for any t ∈

[γ, γ
1−β+γ ] there is an st so that dim(Ca(st)) = t.

To construct such sequence, let R = 1−γs
1−βs

β
γ and define pn = 2Rn

, n =

0, 1, 2, . . . . We now define the sequence a(s) = {an} as follows, a0 = a1 = 1
and

aj = (pn)
−
�

1−sγ
γ

�
j−s when pn ≤ j < pn+1.

Notice that apn = p
− 1

γ
n and

a(pn+1−1) = p
−
�

1−sγ
γ

�
n

(
pR

n − 1
)−s

∼ p
− 1

β

n+1.

Furthermore,
(

1

n

) 1
γ

≤ an ≤

(
1

n

) 1
β

.
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Hence γ(a(s)) = γ and β(a(s)) = β, so a ∈ S. In addition a(s) verifies,

α(a(s)) =
γ(1 − s)

(1 − β) + γ(1 − s)
= f(s).

To show this, we estimate rpn . We see that

rpn =
∑

pn≤j<pn+1

aj +
∑

j≥pn+1

aj .

Estimating these sums, we see that

(6) rpn ∼ Cp
− 1−sγ

1−sβ
1−β

γ
n

so that

α(a(s)) ≤
γ(1 − sβ)

(1 − β) + γ(1 − s)
.

To see that

α(a(s)) ≥
γ(1 − sβ)

(1 − β) + γ(1 − s)
,

we observe that for i ∈ IN, pn < i < pn+1

αi =
ln(1/i)

ln(ri/i)
≥

ln(1/pn)

ln(rpn/pn) = αpn

.

This estimate is obtained by noting that if τ is such that i = pτ
n, (1 < τ < R),

then

ri ≈ p
− 1−sγ

γ
n

(
pR(1−s)

n − pτ(1−s)
n

)
+ p

R2(1−s)−R
γ

n ,

and since 1 < τ < R, by 6 asymptotically we have that ri/rpn → 1. Thus,
for large enough values, we know that

1 <
ln(ri)

ln(rpn)
< τ

which is equivalent to the desired inequality, and therefore dim(Ca(s)) = f(s)
as desired. �

We summarize in the next theorem the main results of this section.

Theorem 4. Let a = {an > 0} be a summable sequence. Then we have

1)

0 ≤ γ(a) ≤ dim(Ca) ≤ α(a) ≤
γ(a)

1 − β(a) + γ(a)
≤ β(a).

In particular when the sequence a is non-increasing we have that

dim(Ca) = α(a).
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2) Given numbers α, β and γ such that 0 ≤ γ ≤ α ≤ γ
1−β+γ ≤ β ≤ 1,

then there exist a summable sequence a (that can be chosen to be non-
increasing) such that

γ(a) = γ, α(a) = α and β(a) = β.

Given a non increasing sequence a it could happen that the α(a)-Hausdorff
measure of the associate Cantor set Ca is zero or infinite. In the next section
we will see that we still can say something in this case.

5. Dimension function

To analyze this situation it will be useful to refine the notion of dimension
in the spirit of Hausdorff’s original work. Throughout this section we fix
a monotonic non-increasing sequence a = {ak} of positive terms such that∑

ak = 1.
We associate to a another non-increasing sequence:

(7) b = {bn} bn =
rn

n
, where rn is as before rn =

∞∑

j=n

aj .

Define the following function h, for a decreasing function f : [1,+∞) → IR
such that f(k) = bk, e.g.

f(x) = bk(k + 1 − x) + bk+1(x − k), x ∈ [k, k + 1)

then let

(8) h(t) =

{
1

f−1(t) t ∈ (0, b1]

h(0) = 0 otherwise.

Then h is a non-decreasing, concave function and

h(bk) =
1

k
.

This function will be useful for determining the dimension of the Cantor
set Ca. We will need some auxiliary results and (more!) notation.

Let W denote the set of binary words of finite length:

W = {e}
⋃

{w1...wr : wi ∈ {0, 1}, r ∈ N} ,

where {e} denotes the empty word. If w,w′ ∈ W then ww′ will denote the
concatenation of w and w′, and the length of word w will be denoted by |w|.
Set |e| = 0 and let W ∗ denote the set of words of positive length. Given w,
either an infinite binary word or a finite binary word of length at least k,
we will denote by w(k) the truncation w1...wk.

It is convenient to use the elements of W to describe the intervals of our
Cantor set Ca. Let Ie denote the initial interval. (Ie = I0

0 ). If w ∈ W ,
|w| = k and Iw is an interval of step k in the construction, then we denote
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by Iw0 and Iw1 the left and right intervals obtained by removing the open
interval from Iw.

In this way if Iw is an interval of step |w|,

(9) Iw = I
|w|P|w|

j=1 wj2k−j
,

then for any w′, Iww′ is an interval of step |ww′| which is related to Iw.
It is worthwhile to note at this stage that in the case of a monotonic non-

increasing sequence, the lengths of Iw also form a non-increasing sequence.
For the sequence bn of 7 we will now denote by bw the element of the

sequence corresponding to bℓ, with ℓ = 2k +
∑k

j=1 wj2
k−j and k = |w|.

In particular note that

(10) if bw = b2k+l then bww′ = b2k′ (2k+l)+s,

where l =
∑k

j=1 wj2
k−j with k = |w| and s =

∑k′

j=1 w′
j2

k′−j with k′ = |w′|.

Lemma 2. With the above notation, for every k ≥ 1, and w, w̃ of length k,
and any w′,

(11)
1

2

h(bww′)

h(bw)
≤

h(b eww′)

h(b ew)
≤ 2

h(bww′)

h(bw)
.

In particular, for any w′ we have

(12) h(bww′) ≤ 4 h(bw).

Proof. Recall that h(bℓ) = 1
ℓ and let k′ = |w′|. If we define

l =

k∑

j=0

wj2
k−j, r =

k∑

j=0

w̃j2
k−j and s =

k′∑

j=0

w′
j2

k′−j ,

then by 10

h(bww′)

h(bw)
=

2k + l

2k′(2k + l) + s
and

h(b eww′)

h(b ew)
=

2k + r

2k′(2k + r) + s
.

Now noting that

1

2
≤

2k + r

2k + l
≤ 2

we obtain the desired result.
For the second inequality just note that h is non-decreasing and therefore

the right-hand side is less or equal than 2 for any w′. �
These bounds of the ratios of h(bk) will be useful for defining a measure

on Ca. Since the construction of this Cantor set relies on the size of the
gaps, it will be useful to define a measure depending on the size of the gaps.
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Proposition 6. There exists a probability measure µh supported on Ca, such
that for every k ≥ 1, 0 ≤ ℓ ≤ 2k − 1,

(13)
1

4
h(b2k+ℓ) ≤ µh(Ik

ℓ ) ≤ 2 h(b2k+ℓ).

Proof. For m ≥ 1 consider the probability measure µm, supported on the
intervals Im

ℓ of level m, such that

µm(Im
t ) =

h(b2m+t)∑2m−1
j=0 h(b2m+j)

.

Note that, if k ≤ m, and w = w1 . . . wk is such that
∑k

j=0 wj2
k−j = t,

µm(Ik
t ) = µm(Iw) =

∑

|w′|=m−k

µm(Iww′),

and hence

(14)




2m−1∑

j=0

h(b2m+j)


 µm(Ik

t ) =
∑

|w′|=m−k

h(bww′).

But by the bounds found in 11 in the previous Lemma,

h(bww′) ≤ 2 h(bw)
h(b eww′)

h(b ew)
, ∀ w̃ such that |w̃| = |w| = k.

Hence, recalling the definition of w, we obtain (from 14), that for all w̃ such
that |w̃| = k,


h(b ew)

2m−1∑

j=0

h(b2m+j)


µm(Ik

t ) ≤ 2 h(bw)
∑

|w′|=m−k

h(b eww′),

and therefore

∑

| ew|=k

h(b ew)
2m−1∑

j=0

h(b2m+j)


µm(Ik

t ) ≤ 2 h(bw)


∑

| ew|=k

∑

|w′|=m−k

h(b eww′)




= 2 h(bw)

2m−1∑

j=0

h(b2m+j),

which yields

µm(Ik
ℓ ) ≤ 2

h(b2k+ℓ)∑2k−1
j=0 h(b2k+j)

, k ≤ m.
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But noting that

1

2
≤

2m−1∑

j=0

h(b2m+j) ≤ 1

and using the other inequality of the Lemma, we finally obtain that for every
1 ≤ k ≤ m, 0 ≤ ℓ ≤ 2k − 1,

1

2
h(b2k+ℓ) ≤ µm(Ik

ℓ ) ≤ 4 h(b2k+ℓ).

Let now µh be the weak∗-limit of µm, then (see for example [Mat95]) for
every 1 ≤ k, 0 ≤ ℓ ≤ 2k − 1,

1

2
h(b2k+ℓ) ≤ µh(Ik

ℓ ) ≤ 4h(b2k+ℓ). �
We are now ready to prove our main result; recall that an h-set was

defined in the Introduction.

Theorem 5. Let a = {ak} be a non-increasing sequence of positive terms
such that

∑
ak = 1 and Ca the associated Cantor set. Then Ca is an h-set.

Moreover
1

32
≤ Hh(Ca) ≤ 1

where Hh is the Hausdorff measure associated to h, and h is the dimension
function defined in 8.

Proof. For the upper bound, let δ > 0 and let n0 be such that n ≥ n0,
rn =

∑
j≥n aj < δ. Then the intervals E1, . . . , En that are the remaining

intervals after the gaps associated to a1, . . . , an−1 are removed, are a δ-
covering of Ca, and since h is concave, we have

n∑

i=1

h(|Ei|) ≤ nh

(
|E1| + · · · + |En|

n

)
= nh

(rn

n

)
= 1,

and therefore Hh(Ca) ≤ 1.
For the lower bound, the idea is to try to use the measure µh, and apply

a generalized version of the Mass transfer principle.
For this, let U be any open set, and let diam(U) = ρ < 1. Let k ≥ 1 and

0 ≤ ℓ ≤ 2k − 2 be such that

(15) b2k+ℓ+1 ≤ ρ < b2k+ℓ

(the case that b2k+1 ≤ ρ < b2k+1−1 will be considered separately). Then,

because the length of the intervals Ik
l is a non-increasing sequence

ρ < b2k =
|Ik

0 | + · · · + |Ik
2k−1

|

2k
< |Ik

0 |.
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Then U can intersect at most 2 consecutive intervals of step k − 1. Hence

µh(U) ≤ (µh(Ik−1
t ) + µh(Ik−1

t )) ∀ 0 ≤ t ≤ 2k − 2,

≤ 4h(b2k−1+t) + 4h(b2k−1+t) by the Proposition

≤ 8h(b2k−1)

≤ 32h(b2k+ℓ+1) by 12.

Therefore since h is non-decreasing,

µh(U) ≤ 32 h(b2k+ℓ+1) ≤ 32 h(diam(U)).

Assume now that ρ is such that b2k+1 ≤ ρ < b2k+1−1. Since ρ < b2k , we still
have

µh(U) ≤ 8h(b2k−1) = 8
1

2k−1
= 32

1

2k+1
= 32h(b2k+1),

and so again,
µh(U) ≤ 32 h(diam(U)).

Therefore, if {Uk} is a δ-covering of Ca, we have
∑

k

h(diam(Uk)) ≥
1

32

∑

k

µh(Uk) ≥
1

32
µh(Ca).

Since this is true for every δ-covering, we obtain:

Hh
δ (Ca) ≥

1

32
µh(Ca), and therefore Hh(Ca) ≥

1

32
. �

Among all the dimension functions, one can also establish a certain equiva-
lence relation, namely h ≡ g if there exist constants c1 and c2 such that

c1 ≤ lim
x→0+

h(x)

g(x)
≤ lim

x→0+

h(x)

g(x)
≤ c2.

The following result relates the function h to α(a).

Proposition 7. If a ∼ 1
n

1/s
then h ≡ xs .

Proof. Since a ∼ 1
n

1/s
, γ(a) = β(a) = s, and hence there exist c > 0 and

d > 0 such that

c ≤

(
1
n

)1/s

an
≤ d ∀ n,

and therefore

an ≤ c′
(

1

n

)1/s

and therefore
rn

n
≤ C

(
1

n

)1/s

.

Analogously,

an ≥ d′
(

1

n

)1/s

and therefore
rn

n
≥ D

(
1

n

)1/s

.



20 C.CABRELLI, F.MENDIVIL, U.MOLTER, AND R.SHONKWILER

Hence

c1 ≤ lim
x→0+

h(x)

xs
≤ lim

x→0+

h(x)

xs
≤ c2. �
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