ON THE HAUSDOFF h-MEASURE OF CANTOR SETS

Carlos Cabrelli, Franklin Mendivil, Ursula M. Molter, and Ronald Shonkwiler

Abstract

We estimate the Hausdorff measure and dimension of Cantor sets in terms of a sequence given by the lengths of the bounded complementary intervals. The results provide the relation between the decay rate of this sequence and the dimension of the associated Cantor set.

It is well known that not every Cantor set on the line is an s-set for some $0 \leq s \leq 1$. However, if the sequence associated to the Cantor set C is non-increasing, we show that C is an h-set for some continuous, concave dimension function h. We construct the function h from the sequence associated to the set C.

1. Introduction

A Cantor set is a compact, perfect, totally disconnected subset of the real line. In this article we will consider only Cantor sets of Lebesgue measure zero. The complement of a Cantor set is a countable union of disjoint open intervals. We will use the term gap for any bounded convex component of the complement of a Cantor set.

Every Cantor set is completely determined by its gaps. Since the gaps are disjoint, the sum of their lengths equals the diameter of the Cantor set.

There is a natural way to associate to each summable sequence of positive numbers a unique Cantor set having gaps with lengths corresponding to the terms of the sequence. In this correspondence the order of the sequence is important. Different rearrangements could correspond to different Cantor sets. On the other hand if two sequences correspond to the same Cantor set, one is clearly a rearrangement of the other.

In the first part of this paper we will concentrate on finding the Hausdorff measure of a Cantor set in terms of the decay of the sequence of the lengths of the gaps. In particular we will show that the Hausdorff dimension depends totally on this behavior.

We establish an equivalence relation between sequences and show that Cantor sets in the same equivalence class have the same dimension.

Since the Cantor set depends on the order of the sequence, one expects that the dimension of the resulting set also depends on the order. This
is true, and moreover, the arrangement of the sequence in monotone nonincreasing order yields the Cantor set with the largest dimension out of all Cantor sets with the same set of gap lengths (see also [BT54]).

Let $0 \leq s \leq 1$. An s-set is a set on the line of Hausdorff dimension s, and whose Hausdorff s-measure is finite and positive. Let h be a non-decreasing, right-continuous function taking the value zero at the origin. The Hausdorff h-measure H^{h} is defined in the same way as the Hausdorff s-measure but replaces the function x^{s} by $h(x)$, (see [Rog98], [Hau19] and equation 1). A set $A \subset \mathbb{R}$ is an h-set, if $0<H^{h}(A)<+\infty$.

Given $0 \leq s \leq 1$, it is not difficult to construct a Cantor set that is an s set. It is also known that not every Cantor set of dimension s is an s-set. So should a set of dimension s, but having Hausdorff measure zero or infinity, be considered s-dimensional?

Hausdorff proposed the Hausdorff h-measure to further investigate non s-sets. In this paper we prove that every Cantor set C on the line associated to a sequence of non-increasing positive real numbers, is an h-set for some continuous concave function h. We explicitly construct h in terms of the sequence that defines the Cantor set. In other words, for every sequence, the set with the largest Hausdorff dimension, is also an h-set for some appropriate function.

The study of Cantor Sets through the decay of the complementary intervals was initiated by Borel in 1948 [Bor49] and continued by Besicovitch and Taylor in their seminal paper [BT54]. The present paper explores this subject further and extends some of their results.

On the other hand, Tricot in [Tri81] and Falconer in [Fa197] obtain results associating properties of the gaps of a Cantor Set with its box dimension. (see also [Tri95]). In [CMPS03] the particular case of the sequence x^{p} was thoroughly analyzed.

The general organization of the paper is as follow. In Section 2, we describe the construction of a Cantor set from a given sequence and we show that every Cantor set can be constructed in this way. In Section 3, we define a partial order between sequences and we prove that the dimension of the associated Cantor sets are consistent with this order. In Section 4 we introduce certain constants associated to a sequence and we provide the relationship of these constants to the dimension of the associated Cantor set. The main results of this section are summarized in Theorem 4. Finally in Section 5 we prove the fundamental result that every Cantor set is an h-set for some dimension function h. We construct this function from the sequence that defines the Cantor set.
1.1. Notation. We recall the definitions of Hausdorff measure and dimension.

Definition Let $A \subset \mathbb{R}$ and $\alpha>0$. For $\delta>0$ let

$$
\mathcal{H}_{\delta}^{\alpha}(A)=\inf \left\{\sum\left(\operatorname{diam}\left(E_{i}\right)\right)^{\alpha}: E_{i} \text { open, } \cup E_{i} \supset A, \operatorname{diam}\left(E_{i}\right) \leq \delta\right\}
$$

Then, the α-dimensional Hausdorff measure of $A, \mathcal{H}^{\alpha}(A)$, is defined as

$$
\mathcal{H}^{\alpha}(A)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{\alpha}(A),
$$

and the Hausdorff dimension of A is,

$$
\operatorname{dim}(A)=\sup \left\{\alpha: \mathcal{H}^{\alpha}(A)>0\right\} .
$$

If h is a non-decreasing, right-continuous function such that $h(0)=0$, the Hausdorff h-measure is defined as

$$
\begin{equation*}
\mathcal{H}^{\alpha}(A)=\lim _{\delta \rightarrow 0} \inf \left\{\sum h\left(\operatorname{diam}\left(E_{i}\right)\right): E_{i} \text { open, } \cup E_{i} \supset A, \operatorname{diam}\left(E_{i}\right) \leq \delta\right\} . \tag{1}
\end{equation*}
$$

It can be shown $([\mathbf{R o g} \mathbf{9 8}])$, that if in the definition of the Hausdorff measure the elements of the coverings are chosen to be closed sets, or Borel sets, the resulting measure is the same.

Throughout the paper, we will use the notation $\operatorname{dim}(A)$ for the Hausdorff dimension of a set A, since it is the only concept of dimension that we are considering.

2. Construction of Cantor sets

In what follows we will assign to each summable sequence of positive numbers a unique Cantor set with gaps whose lengths correspond to the terms of this sequence. Let $a=\left\{a_{k}\right\}$ be a sequence of real numbers with $a_{n}>0$ for all $n=1,2, \ldots$ and $\sum a_{n}=S_{a}<\infty$. Consider a binary tree where the nodes are labeled with the natural numbers from left to right and from top to bottom (i.e. at level zero there is only one node with label 1 , at level 1 there are two nodes with labels 2 and 3 , and so on, at level k there are 2^{k} nodes with labels $2^{k}, 2^{k}+1, \ldots, 2^{k+1}-1$). If $n \in \mathbb{N}$, denote by T_{n} the subtree with head n, i.e. T_{1} is the whole tree, T_{2} and T_{3} are the left and right subtrees associated to nodes two and three, and so on. Now we construct a Cantor set in the interval $I=\left[0, S_{a}\right]$ in the following way: at step one we remove an open interval of length a_{1} from I creating two closed subintervals I_{0}^{1} and I_{1}^{1} of lengths $\left|I_{0}^{1}\right|$ and $\left|I_{1}^{1}\right|$ given by

$$
\left|I_{0}^{1}\right|=\sum_{k \in T_{2}} a_{k} \quad \text { and } \quad\left|I_{1}^{1}\right|=\sum_{k \in T_{3}} a_{k} .
$$

At step k we have 2^{k} intervals $I_{0}^{k}, \ldots, I_{2^{k}-1}^{k}$. From I_{ℓ}^{k} we remove one open interval of length $a_{2^{k}+\ell}$ creating the closed intervals $I_{2 \ell}^{k+1}$ and $I_{2 \ell+1}^{k+1}$ of
lengths

$$
\left|I_{2 \ell}^{k+1}\right|=\sum_{k \in T_{2^{k}+2 \ell}} a_{k} \quad \text { and } \quad\left|I_{2 \ell+1}^{k+1}\right|=\sum_{k \in T_{2^{k}+2 \ell+1}} a_{k} .
$$

If $F_{k}=\cup_{\ell=0}^{2^{k}-1} I_{\ell}^{k}$, then F_{k} is closed and $F_{k} \supset F_{k+1}$ for all k. Define $C_{a}=\cap F_{k}$. We will call C_{a} the Cantor set associated with the sequence a and $g_{a_{k}}$ will denote the gap of C_{a} associated with the term a_{k}. In particular, $\left|g_{a_{k}}\right|=a_{k}$. If g and g^{\prime} are gaps, we will say that $g<g^{\prime}$ if all $x \in g, y \in g^{\prime}$ satisfy that $x<y$. Given a sequence a and its associated Cantor set C_{a}, we define a cut of C_{a} to be a partition of $\mathbb{N}=L \cup R$ such that

$$
g_{a_{\ell}}<g_{a_{r}} \quad \text { for all } \ell \in L, r \in R .
$$

We will allow L or R to be empty.
Lemma 1. Every point in C_{a} defines a cut and conversely, every cut of C_{a} defines a unique point of C_{a}.

Proof. For $x \in C_{a}$ define $L=\left\{n: g_{a_{n}} \subset[0, x]\right\}$. For the converse, if (L, R) is a cut, then let

$$
s=\sup \left\{d \in \mathbb{R}: d \text { is a right endpoint of some gap } g_{a_{n}}, n \in L\right\}
$$

and

$$
t=\inf \left\{c \in \mathbb{R}: c \text { is a left endpoint of some gap } g_{a_{m}}, m \in R\right\} .
$$

Clearly $s \leq t$. If $s<t$ then $[s, t] \subset C_{a}$, a contradiction.
Let C_{a} and C_{b} be Cantor sets associated to sequences a and b respectively. As a result of the definition of C_{a} and C_{b} it is clear that if for some $n, m \in \mathbb{N}$

$$
g_{a_{n}}<g_{a_{m}}, \quad \text { then } \quad g_{b_{n}}<g_{b_{m}} .
$$

This implies that if (L, R) define a cut of C_{a}, it also defines a cut of C_{b}.
Also, if $x \in C_{a}$ is defined by a cut (L, R), then

$$
x=\sum_{n \in L}\left|g_{a_{n}}\right| .
$$

3. Equivalences of Cantor sets

The previous considerations allow us to define a natural map $\pi_{a b}$ from C_{a} into C_{b}, that assigns to the point $x \in C_{a}$ the point $y \in C_{b}$ defined by the same cut associated to x, i.e. if $L_{a}(x)=\left\{n \in \mathbb{N}: g_{a_{n}} \subset[0, x]\right\}$, then

$$
y=\pi_{a b}(x)=\sum_{n \in L_{a}(x)}\left|g_{b_{n}}\right| .
$$

Observe that y can be written also as

$$
y=\sum_{n \in L_{b}(y)}\left|g_{b_{n}}\right| \quad \text { with } L_{b}(y)=\left\{n \in \mathbb{N}: g_{b_{n}} \subset[0, y]\right\} .
$$

The map $\pi_{a b}: C_{a} \rightarrow C_{b}$ is one-to-one and onto. It can be extended linearly to a one-to-one map from $\left[0, S_{a}\right]$ into $\left[0, S_{b}\right]$. For, we map the gap $g_{a_{n}}$ linearly into the gap $g_{b_{n}}$, i.e. if $g_{a_{n}}=(c, d)$ and $g_{b_{n}}=\left(c^{\prime}, d^{\prime}\right)$, then

$$
\pi_{a b}(x)=\frac{c^{\prime}(x-d)-d^{\prime}(x-c)}{c-d}, \quad \text { for } \quad x \in(c, d) .
$$

Note that π is an increasing function, since given $x, y \in C_{a}$ with $x<y$, we have

$$
\begin{aligned}
\pi_{a b}(y)-\pi_{a b}(x) & =\sum_{n \in L_{a}(y)} b_{n}-\sum_{n \in L_{a}(x)} b_{n} \\
& =\sum_{n \in\left(L_{a}(y) \backslash L_{a}(x)\right)} b_{n}=\sum_{\left\{n: g_{a_{n}} \subset[x, y]\right\}} b_{n}>0 .
\end{aligned}
$$

This shows that $\pi_{a b}$ is increasing on C_{a}. This implies that $\pi_{a b}$ is increasing on $\left[0, S_{a}\right]$. Since $\pi_{a b}:\left[0, S_{a}\right] \rightarrow\left[0, S_{b}\right]$ is onto, it must be continuous and consequently $\pi_{a b}^{-1}:\left[0, S_{b}\right] \rightarrow\left[0, S_{a}\right]$ is also continuous.

We have proved the following proposition.
Proposition 1. If C_{a} and C_{b} are the Cantor sets associated to arbitrary sequences a and b, then the map $\pi_{a b}:\left[0, S_{a}\right] \rightarrow\left[0, S_{b}\right]$ is increasing, one to one, onto and bi-continuous. Furthermore $\pi_{a b}\left(C_{a}\right)=C_{b}$.

Definition 1. Given two summable sequences a and b of positive terms, we will say that a is of lower order than b,

$$
a \prec b \quad \text { if there exists } k>0 \text { such that } \frac{a_{n}}{b_{n}}<k, \quad \forall n \in \mathbb{N} \text {. }
$$

If $a \prec b$ and $b \prec a$ we will say that a and b are of the same order and we will write $a \sim b$. Note that

$$
a \sim b \quad \Longleftrightarrow \quad k_{1}<\frac{a_{n}}{b_{n}}<k_{2}, \quad \forall n \in \mathbb{N},
$$

for some constants $k_{1}, k_{2}>0$.
We will need the following result which appeared in [CMPS03].
Proposition 2 (CMPS03). Let $a=\left\{a_{k}\right\}_{k \in \mathbb{N}}$ be defined by $a_{k}=\left(\frac{1}{k}\right)^{p}$, $p>1$. Then C_{a} is a $\frac{1}{p}$-set, precisely,

$$
\frac{1}{8}\left(\frac{2^{p}}{2^{p}-2}\right)^{\frac{1}{p}} \leq \mathcal{H}^{\frac{1}{p}}\left(C_{a}\right) \leq\left(\frac{1}{p-1}\right)^{\frac{1}{p}}
$$

and furthermore

$$
\operatorname{dim} C_{a}=\frac{1}{p} .
$$

Theorem 1. Let C_{a} and C_{b} be Cantor sets associated to the sequences a and b. Then we have

1) if $a \prec b$ then $\operatorname{dim}\left(C_{a}\right) \leq \operatorname{dim}\left(C_{b}\right)$, in particular, if $a \sim b$ then $\operatorname{dim}\left(C_{a}\right)=$ $\operatorname{dim}\left(C_{b}\right)$,
2) there exist sequences $a=\left\{a_{n}\right\}$ and $b=\left\{b_{n}\right\}$ such that $\lim \inf \frac{a_{n}}{b_{n}}=0$, and

$$
\operatorname{dim}\left(C_{a}\right)=\operatorname{dim}\left(C_{b}\right) .
$$

Proof. For part (1), if $a \prec b$, we will show that the map $\pi_{b a}$ defined above is Lipschitz. For given $x<y, x, y \in C_{b}$, then

$$
\begin{align*}
\pi_{b a}(y)-\pi_{b a}(x) & =\sum_{\left\{n: g_{b_{n}} \subset[x, y]\right\}} a_{n} \leq k \sum_{\left\{n: g_{b_{n}} \subset[x, y]\right\}} b_{n} \tag{2}\\
& =k(y-x) . \tag{3}
\end{align*}
$$

Then we have $\operatorname{dim}\left(C_{a}\right)=\operatorname{dim}\left(\pi_{b a}\left(C_{b}\right)\right)$, and by an elementary property of Hausdorff dimension we obtain $\operatorname{dim}\left(\pi_{a b}\left(C_{b}\right)\right) \leq \operatorname{dim}\left(C_{b}\right)$ proving (1).

For part (2), consider a sequence $a=\left\{a_{n}\right\}$ such that for some fixed $p>1$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{\frac{1}{n^{p}}}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{q}}}{a_{n}}=0, \quad \text { for all } q>p
$$

Then the maps

$$
\begin{align*}
\pi_{1} & : C_{\frac{1}{n P}} \rightarrow C_{a} \tag{4}\\
\pi_{2} & : C_{a} \rightarrow C_{\frac{1}{n^{q}}} \tag{5}
\end{align*}
$$

are Lipschitz using a similar argument as in the first part. This implies

$$
\frac{1}{q} \leq \operatorname{dim}\left(C_{a}\right) \leq \frac{1}{p}, \quad \text { for all } q>p
$$

Then $\operatorname{dim}\left(C_{a}\right)=\frac{1}{p}$.
3.1. Example. Let $x>2$ and let $\lambda=\left\{\lambda_{n}\right\}$ and $\gamma=\left\{\gamma_{n}\right\}$ be two sequences defined as follows:

$$
\lambda_{n}=\left(\frac{1}{\left[x^{k}\right]+j}\right)^{p} \quad \gamma_{n}=\left(\frac{1}{n}\right)^{\frac{p \log x}{\log 2}}=\left(\frac{1}{\left.x^{\frac{\log n}{\log 2}}\right)^{p}, ~}\right.
$$

where $n=2^{k}+j, 0 \leq j \leq 2^{k}-1$, and $[y]$ is the greatest integer smaller than y.

Then

$$
\frac{1}{2^{p}} \leq\left(\frac{1}{1+j / x^{k}}\right)^{p} \leq\left(\frac{x^{k}}{x^{k}+j}\right)^{p} \leq \frac{\lambda_{n}}{\gamma_{n}} \leq x^{p}
$$

So we know that $\frac{1}{2^{p}} \leq \lim \inf \frac{\lambda_{n}}{\gamma_{n}} \leq \limsup \frac{\lambda_{n}}{\gamma_{n}} \leq x^{p}$, and hence $\gamma \sim \lambda$ (compare [CMPS03]).

4. Computation of Hausdorff dimensions

In this section we will define some indices associated with a summable sequence. These numbers can be considered as a measure of the decay rate of the sequence. We will then compare their values with the dimension of the associated Cantor set.

We will denote by λ_{p} the sequence $\lambda_{p}(n)=1 / n^{p}$. Let us define now for a sequence $a=\left\{a_{n}\right\}$,

$$
\begin{aligned}
\beta(a) & =\inf \left\{s: 0<s, a \prec \lambda_{1 / s}\right\} \\
\gamma(a) & =\sup \left\{s: 0<s, \lambda_{1 / s} \prec a\right\} \\
\delta(a) & =\inf \left\{s: 0<s \leq 1, \sum_{n} a_{n}^{s}<\infty\right\}
\end{aligned}
$$

An historical survey of various indices associated with the decay of gaps (when a_{n} decreases) and the box dimension is given in Tricot, [Tri81], together with more complete results.

Theorem 2. With the above notation,

$$
\gamma(a)=\underline{\lim } \frac{-\log (n)}{\log \left(a_{n}\right)} \quad \text { and } \quad \beta(a)=\varlimsup \frac{-\log (n)}{\log \left(a_{n}\right)}
$$

Proof. Let us call

$$
A=\underline{\lim } \frac{-\log (n)}{\log \left(a_{n}\right)} \quad \text { and } \quad B=\varlimsup \lim \frac{-\log (n)}{\log \left(a_{n}\right)}
$$

Let $s<A$, then $s<-\log (n) / \log \left(a_{n}\right)$ for sufficiently large n. For such n, we then have

$$
\left(\frac{1}{n}\right)^{1 / s}<a_{n}
$$

Thus, $(1 / n)^{1 / s} \prec\left(a_{n}\right)$, and therefore, $s \leq \gamma(a)$. Thus, we know that $A \leq$ $\gamma(a)$.

Conversely, suppose that $s>A$. Then

$$
-\frac{1}{s}>\underline{\lim } \frac{\log \left(a_{n}\right)}{\log (n)}
$$

Now this implies that there is some subsequence n_{k} so that

$$
-\frac{1}{s}>\frac{\log \left(a_{n_{k}}\right)}{\log \left(n_{k}\right)} \Rightarrow\left(\frac{1}{n_{k}}\right)^{1 / s}>a_{n_{k}}
$$

Thus, for all $\epsilon>0$ we know that

$$
\left(\frac{1}{n}\right)^{\frac{1}{s}+\epsilon} \nprec a_{n}, \quad \text { and therefore } \quad s+\epsilon>\gamma(a), \quad \forall \quad \epsilon>0, s>A
$$

Hence $\gamma(a)=A$.
The proof of $\beta(a)=B$ is similar, but we give it for completeness.
For $s>B$ we know that $-1 / s>\log \left(a_{n}\right) / \log (n)$ for sufficiently large n. For such n we have $(1 / n)^{1 / s}>a_{n}$ so that $a_{n} \prec(1 / n)^{1 / s}$ which implies that $\beta(a) \leq B$.

Conversely, if $s<B$ then there is some subsequence n_{k} so that

$$
-\frac{1}{s}<\frac{\log \left(a_{n_{k}}\right)}{\log \left(n_{k}\right)} \Rightarrow\left(\frac{1}{n_{k}}\right)^{\frac{1}{s}}<a_{n_{k}}
$$

Thus,

$$
a_{n} \nprec\left(\frac{1}{n}\right)^{\frac{1}{s}-\epsilon} \quad \forall \epsilon>0,
$$

therefore $a_{n} \nprec(1 / n)^{1 / s}$, and hence $B \leq \beta(a)$.
Note that out of the three constants defined at the beginning of this section, only δ is invariant under rearrangements, whereas β and γ are not. Therefore, since we know that for $a_{n}=\frac{1}{n^{p}}$, rearrangements can indeed change the dimension (see [CMPS03]), we have to discard the intuition that $\delta(a)=\operatorname{dim}\left(C_{a}\right)$.

Proposition 3. If a is a summable sequence of positive terms then

1) $\gamma(a) \leq \operatorname{dim}\left(C_{a}\right) \leq \beta(a)$.
2) $\gamma(a) \leq \delta(a) \leq \beta(a)$.
3) If $a=\left\{a_{n}\right\}$ is monotone decreasing, then $\delta(a)=\beta(a)$.

Proof. Part (1) is a consequence of Theorem 1 and the definition of $\gamma(a)$ and $\beta(a)$.

For part (2), choose $s>0$ such that $a \prec \lambda_{1 / s}$ then for every n,

$$
a_{n} \leq \frac{c}{n^{1 / s}} \quad \text { for some } \quad c>0
$$

then

$$
a_{n}^{s+\epsilon} \leq \frac{c^{\prime}}{n^{(s+\epsilon) / s}}
$$

which implies that $s+\epsilon \geq \delta(a)$ for all $\epsilon>0$ and then $\delta(a) \leq \beta(a)$. Furthermore, for each $\epsilon \geq 0$ we have for every n :

$$
\frac{c}{n^{\frac{1}{\gamma(a)-\epsilon}}} \leq a_{n} \text { for some constant } \quad c
$$

so

$$
\sum_{n} a_{n}^{\gamma(a)-\epsilon}=+\infty
$$

which implies that $\delta(a) \geq \gamma(a)-\epsilon$. Since ϵ is arbitrary, we conclude that $\delta(a) \geq \gamma(a)$. For part (3), since we already proved part (2), it only remains to see that $\beta(a) \leq \delta(a)$. If for some $0<s \leq 1, \sum_{n} a_{n}^{s}<+\infty$, then using the monotonicity we conclude that

$$
\lim _{n \rightarrow \infty} n a_{n}^{s}=0
$$

and therefore $n^{1 / s} a_{n}<k$ for some positive constant k. This says that $a \prec \lambda_{1 / s}$ which implies the result.

Note. Part 3) of the preceding proposition has already been proved by Tricot in [Tri81].

A consequence of the preceding proposition is that if a is a monotone nonincreasing summable sequence of positive terms and \widetilde{a} is any rearrangement of a then $\beta(a)=\delta(a)=\delta(\widetilde{a}) \leq \beta(\widetilde{a})$.

Another immediate consequence of the definition of $\gamma(a)$ and $\beta(a)$ is the following property:

Property. Let a be any summable sequence of positive terms. If $0<b<$ $\beta(a)$ then $\lim \sup _{n \rightarrow \infty} n^{1 / b} a_{n}=+\infty$, and if $\gamma(a) \leq b$ then $\liminf _{n \rightarrow \infty} n^{1 / b} a_{n}=$ 0

This property tells us that if we take a rearrangement \widetilde{a} of a monotone non-increasing sequence a such that $\beta(a) \neq \beta(\widetilde{a})$, (hence $\beta(a)<\beta(\widetilde{a})$), then

$$
\limsup _{n \rightarrow \infty} n^{1 / \beta(a)} \widetilde{a}_{n}=+\infty
$$

Using the previous observations, we can actually improve on part (1) of Proposition 3:

Theorem 3. If $a=\left\{a_{n}\right\}$ is a monotonic non-increasing summable sequence of positive terms, and \widetilde{a} is a rearrangement of a, then $\operatorname{dim}\left(C_{\widetilde{a}}\right) \leq \delta(a)=$ $\beta(a)$.

Proof. We will first provide an alternate proof of part (1) of the previous proposition, for the monotone sequence a. This proof will then allows us to deduce the desired property.

Let $s>\beta(a)$ and let $\delta>0$ be given. Let n be so large that $\sum_{k=n+1}^{\infty} a_{k}<\delta$. Then the remaining intervals after the nth stage of construction, $\left\{E_{k}\right\}_{k=1}^{n+1}$,
are all of length smaller than δ, and are therefore a δ-covering of C_{a}. Note that these E_{k} are just some I_{j}^{r} defined in section 2. By Hölder's inequality and integral comparison, they satisfy

$$
\begin{aligned}
\sum_{k=1}^{n+1}\left|E_{k}\right|^{s} & \leq(n+1)^{1-s}\left(\sum_{k=1}^{n+1}\left|E_{k}\right|\right)^{s} \\
& \leq C(n-1)^{1-s}\left(\sum_{k=n+1}^{\infty}\left(\frac{1}{n}\right)^{\frac{1}{s}}\right)^{s} \\
& \leq C\left(\frac{s}{1-s}\right)^{s}\left(1+\frac{1}{n}\right)^{1-s} .
\end{aligned}
$$

Therefore, for all $s>\beta(a)$ the Hausdorff measure $\mathcal{H}_{\delta}^{s}\left(C_{a}\right)<c\left(\frac{s}{1-s}\right)^{s}$. Hence $\operatorname{dim}\left(C_{a}\right) \leq s$. Since this is true for all $s>\beta(a)$, we have

$$
\operatorname{dim}\left(C_{a}\right) \leq \beta(a)
$$

Let now $\widetilde{a}=\left\{\widetilde{a}_{n}\right\}$ be a rearrangement of a. Then for all $\delta>0$ let n again be so large that $\sum_{k=n+1}^{\infty} a_{k}<\delta$. There exists an $m \geq n$ such that

$$
\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subset\left\{\widetilde{a}_{1}, \widetilde{a}_{2}, \ldots, \widetilde{a}_{m}\right\}
$$

So, for some $i_{1}, \ldots, i_{n} \in\{1, \ldots, m\}$ we have $\widetilde{a}_{i_{1}}=a_{1}, \ldots, \widetilde{a}_{i_{n}}=a_{n}$. Let $E_{i_{1}}, E_{i_{2}}, \ldots, E_{i_{n+1}}$ be the remaining intervalas due to $\widetilde{a}_{i_{1}}, \ldots, \widetilde{a}_{i_{n}}$ in the construction of $C_{\widetilde{a}}$. Then $\cup_{j=1}^{n+1} E_{i_{j}}$ is a covering of $C_{\widetilde{a}}$ and

$$
\sum_{j=1}^{n+1}\left|E_{i_{j}}\right|=\sum_{k=n+1}^{\infty} a_{k}<\delta .
$$

This implies that $\left|E_{i_{j}}\right|<\delta$ and hence $\left\{E_{i_{j}}\right\}$ is a δ-covering of $C_{\tilde{a}}$. Using again the integral approximation as above, we obtain that $\operatorname{dim}\left(C_{\tilde{a}}\right) \leq \beta(a)$.
4.1. Monotone non-increasing sequences. For a non-increasing sequence a, we already know that $\delta(a)=\beta(a)$. In addition, by Proposition 3, we know that

$$
\gamma(a) \leq \operatorname{dim}\left(C_{a}\right) \leq \beta(a)
$$

Therefore, if

$$
\lim \left(\frac{\log \left(a_{n}\right)}{\log n}\right)=\ell, \quad \text { then we have } \quad \operatorname{dim}\left(C_{a}\right)=-\frac{1}{\ell}
$$

This result extends the result of Falconer [Fal97] (pg.55). Moreover, Falconer shows that if the limit does not exist then the upper and lower box-dimensions disagree.

In this case however, we still want to determine the dimension of C_{a}. For this, we introduce two new constants associated to the sequence a.

In fact, these two constants are related to the behavior of the tail of the sequence. Let us call $r_{n}=\sum_{j \geq n} a_{j}$. Using an argument analogous to the
one used in the proof of Theorem 3, one can see that the s-Hausdorff measure of C_{a} is bounded by

$$
H^{s}\left(C_{a}\right) \leq c \underline{\lim } n\left(\frac{r_{n}}{n}\right)^{s} .
$$

We therefore define the following two constants, associated to the sequence a :

$$
\begin{aligned}
& \tau(a)=\inf \left\{s>0: \underline{\lim } n\left(\frac{r_{n}}{n}\right)^{s}<+\infty\right\}, \\
& \alpha(a)=\underline{\lim } \alpha_{n} \quad \text { where } \quad n\left(\frac{r_{n}}{n}\right)^{\alpha_{n}}=1 .
\end{aligned}
$$

Note. The constant α associated to a monotone sequence a was introduced in [BT54]. In fact they show that $\operatorname{dim}\left(C_{\tilde{a}}\right) \leq \alpha(a)$, where \tilde{a} is any rearrangement of a.

It is interesting to remark, that $\overline{\lim } \alpha_{n}$ was introduced already in 1948 by Emil Borel with the name of logarithmic density.

From results in the seminal paper by Besicovitch and Taylor [BT54], one can conclude that for a monotonic non-increasing sequence $\operatorname{dim}\left(C_{a}\right)=\alpha(a)$ (see [CHM03]), and that for each t and β such that $0 \leq t \leq \beta$, there is a monotone non-increasing sequence $a=\left\{a_{n}\right\}$, such that $\beta(a)=\beta$, and $\alpha(a)=t$. In our next proposition however, we show the surprising result that if $\gamma(a)$ is strictly smaller than $\beta(a)$, then $\alpha(a)$ has a smaller than expected bound.

Proposition 4. With the notation above, for every non-increasing sequence a,

$$
\alpha(a)=\tau(a) \quad \text { and } \quad \alpha(a) \leq \frac{\gamma(a)}{1-\beta(a)+\gamma(a)} .
$$

Proof. $(\alpha(a) \leq \tau(a))$
Let $s>0$ be such that $\underline{\lim n}\left(\frac{r_{n}}{n}\right)^{s}<+\infty$, then

$$
n\left(\frac{r_{n}}{n}\right)^{s}=n\left(\frac{r_{n}}{n}\right)^{\alpha_{n}}\left(\frac{r_{n}}{n}\right)^{s-\alpha_{n}}=\left(\frac{r_{n}}{n}\right)^{s-\alpha_{n}}
$$

 there must exists a subsequence $\alpha_{n_{k}}$ such that

$$
\alpha_{n_{k}}<s+\frac{1}{k}, \quad \text { for all } k .
$$

We have

$$
\alpha(a)=\underline{\lim } \alpha_{n} \leq \underline{\lim } \alpha_{n_{k}} \leq s,
$$

and therefore $\alpha(a) \leq \tau(a)$.

For the converse, $\tau(a) \leq \alpha(a)$, assume now that $\alpha(a)<\tau(a)$, and consider s, such that $\alpha(a)<s<\tau(a)$. Let $\left\{a_{n_{k}}\right\}$ be such that $\lim _{k} a_{n_{k}}=\alpha(a)$ and $a_{n_{k}}<s$ for all k. Then

$$
+\infty=\frac{\lim }{n} n\left(\frac{r_{n}}{n}\right)^{s}=\frac{\lim }{k} n_{k}\left(\frac{r_{n_{k}}}{n_{k}}\right)^{s}=\frac{\lim }{k}\left(\frac{r_{n_{k}}}{n_{k}}\right)^{s-\alpha_{n_{k}}}=0
$$

(since $s-\alpha_{n_{k}}>c>0$ for some c and for all k). This contradiction shows that $\alpha(a)=\tau(a)$.

For the other inequality, note that if $\gamma(a)=\beta(a)$, then $\frac{\gamma(a)}{1-\beta(a)+\gamma(a)}=\gamma(a)$ and there is nothing to prove. However, if $\gamma(a)<\beta(a)$, then

$$
\frac{\gamma(a)}{1-(\beta(a)-\gamma(a))}<\beta(a)
$$

To show that $\alpha(a)$ satisfies the desired inequality, we prove that for each $\varepsilon>$ $0, \alpha(a) \leq \frac{\gamma(a)+\varepsilon}{1-(\beta(a)-\gamma(a)-\varepsilon)}$. For this, we will show, that for each $\varepsilon>0$, there

Fix $\beta(a)-\gamma(a) \geq \varepsilon>0$. Let us call $\gamma_{\varepsilon}=\gamma(a)+\varepsilon$. From the definition of $\gamma(a)$, we immediately see that there is a subsequence n_{k} so that $a_{n_{k}} \leq$ ${\frac{1}{n_{k}}}^{1 / \gamma_{\varepsilon}}$. This is the subsequence that we desire.

Since a_{n} is monotone, we can estimate $r_{n_{k}}$ from above. Fix n_{k}. Define a new sequence $\left\{b_{n}\right\}_{n}$ in the following way:

$$
b_{j}= \begin{cases}a_{j} & \text { for } j \leq n_{k} \\ \left(\frac{1}{n_{k}}\right)^{1 / \gamma_{\varepsilon}} & \text { for } n_{k} \leq j<\left\lceil n_{k}^{\beta(a) / \gamma_{\varepsilon}}\right\rceil \\ \frac{1}{j}^{1 / \beta(a)} & \text { for all larger } j\end{cases}
$$

where $\lceil x\rceil$ stands for the smallest integer that is larger or equal than x. So we have that $a_{j} \leq b_{j}$ for all j, and therefore $\sum_{j \geq n_{k}} a_{j} \leq \sum_{j \geq n_{k}} b_{j}$.

We can estimate that

$$
\sum_{j=n_{k}}^{\left\lceil n_{k}^{\beta / \gamma_{\varepsilon}}\right\rceil} b_{j}=\frac{\left\lceil n_{k}^{\beta(a) / \gamma_{\varepsilon}}\right\rceil-n_{k}}{n_{k}^{1 / \gamma_{\varepsilon}}} \sim n_{k}^{(\beta(a)-1) / \gamma_{\varepsilon}} \quad \text { for } k \text { large enough }
$$

and, using an integral comparison, we see that

$$
\sum_{j \geq\left\lceil n_{k}^{\left.\beta(a) / \gamma_{\varepsilon}\right\rceil}\right.} b_{j}=C\left(n_{k}^{\beta(a) / \gamma_{\varepsilon}}\right)^{(\beta(a)-1) / \beta(a)}
$$

Since both of these terms are $O\left(n_{k}^{(\beta(a)-1) / \gamma_{\varepsilon}}\right)$, we have that

$$
\alpha(a) \leq \frac{\gamma(a)+\varepsilon}{1-(\beta(a)-\gamma(a)-\varepsilon)} \quad \text { for every } \varepsilon
$$

In [Tri95] it is proved that $\beta(a)=\overline{\lim }-\frac{n}{a_{n}}=\varlimsup \alpha_{n}$. Proposition 4 above shows that this is false for the lim. Moreover, we know that there are no sequences a, with $\gamma(a)<\beta(a)$ and

$$
\frac{\gamma(a)}{1-\beta(a)+\gamma(a)}<\operatorname{dim}\left(C_{a}\right) \leq \beta(a) .
$$

So the question now is about the existence of a sequence a, such that

$$
\gamma(a) \leq \operatorname{dim}\left(C_{a}\right) \leq \frac{\gamma(a)}{1-\beta(a)+\gamma(a)}
$$

The next proposition answers this question completely and emphasizes the asimetry between the \varlimsup lim and the lim.
Proposition 5. Let $0<\gamma \leq \beta \leq 1$ be given, and let
$S=\left\{a=\left\{a_{n}\right\}\right.$, monotonic non-increasing such that $\gamma(a)=\gamma$ and $\left.\beta(a)=\beta\right\}$, then for any number $t, \gamma \leq t \leq \frac{\gamma}{1-\beta+\gamma}$, there is a sequence $a \in S$ such that $\operatorname{dim}\left(C_{a}\right)=t$.
Proof. Let $0 \leq s \leq 1$, and define

$$
f(s)=\frac{\gamma(1-s \beta)}{1-\beta+\gamma(1-s)}
$$

For each s we will construct a sequence $a(s) \in S$, such that $\operatorname{dim}\left(C_{a(s)}\right)=$ $f(s)$. Since f is decreasing, $f(0)=\frac{\gamma}{1-\beta+\gamma}$ and $f(1)=\gamma$, for any $t \in$ $\left[\gamma, \frac{\gamma}{1-\beta+\gamma}\right]$ there is an s_{t} so that $\operatorname{dim}\left(C_{a\left(s_{t}\right)}\right)=t$.

To construct such sequence, let $R=\frac{1-\gamma s}{1-\beta s} \frac{\beta}{\gamma}$ and define $p_{n}=2^{R^{n}}, n=$ $0,1,2, \ldots$. We now define the sequence $a(s)=\left\{a_{n}\right\}$ as follows, $a_{0}=a_{1}=1$ and

$$
a_{j}=\left(p_{n}\right)^{-\left(\frac{1-s \gamma}{\gamma}\right)} j^{-s} \quad \text { when } p_{n} \leq j<p_{n+1} \text {. }
$$

Notice that $a_{p_{n}}=p_{n}^{-\frac{1}{\gamma}}$ and

$$
a_{\left(p_{n+1}-1\right)}=p_{n}^{-\left(\frac{1-s \gamma}{\gamma}\right)}\left(p_{n}^{R}-1\right)^{-s} \sim p_{n+1}^{-\frac{1}{\beta}} .
$$

Furthermore,

$$
\left(\frac{1}{n}\right)^{\frac{1}{\gamma}} \leq a_{n} \leq\left(\frac{1}{n}\right)^{\frac{1}{\beta}}
$$

Hence $\gamma(a(s))=\gamma$ and $\beta(a(s))=\beta$, so $a \in S$. In addition $a(s)$ verifies,

$$
\alpha(a(s))=\frac{\gamma(1-s)}{(1-\beta)+\gamma(1-s)}=f(s) .
$$

To show this, we estimate $r_{p_{n}}$. We see that

$$
r_{p_{n}}=\sum_{p_{n} \leq j<p_{n+1}} a_{j}+\sum_{j \geq p_{n+1}} a_{j} .
$$

Estimating these sums, we see that

$$
\begin{equation*}
r_{p_{n}} \sim C p_{n}^{-\frac{1-s \gamma}{1-s \beta} \frac{1-\beta}{\gamma}} \tag{6}
\end{equation*}
$$

so that

$$
\alpha(a(s)) \leq \frac{\gamma(1-s \beta)}{(1-\beta)+\gamma(1-s)} .
$$

To see that

$$
\alpha(a(s)) \geq \frac{\gamma(1-s \beta)}{(1-\beta)+\gamma(1-s)},
$$

we observe that for $i \in \mathbb{N}, p_{n}<i<p_{n+1}$

$$
\alpha_{i}=\frac{\ln (1 / i)}{\ln \left(r_{i} / i\right)} \geq \frac{\ln \left(1 / p_{n}\right)}{\ln \left(r_{p_{n}} / p_{n}\right)=\alpha_{p_{n}}} .
$$

This estimate is obtained by noting that if τ is such that $i=p_{n}^{\tau},(1<\tau<R)$, then

$$
r_{i} \approx p_{n}^{-\frac{1-s \gamma}{\gamma}}\left(p_{n}^{R(1-s)}-p_{n}^{\tau(1-s)}\right)+p_{n}^{R^{2}(1-s)-\frac{R}{\gamma}},
$$

and since $1<\tau<R$, by 6 asymptotically we have that $r_{i} / r_{p_{n}} \rightarrow 1$. Thus, for large enough values, we know that

$$
1<\frac{\ln \left(r_{i}\right)}{\ln \left(r_{p_{n}}\right)}<\tau
$$

which is equivalent to the desired inequality, and therefore $\operatorname{dim}\left(C_{a(s)}\right)=f(s)$ as desired.

We summarize in the next theorem the main results of this section.
Theorem 4. Let $a=\left\{a_{n}>0\right\}$ be a summable sequence. Then we have
1)

$$
0 \leq \gamma(a) \leq \operatorname{dim}\left(C_{a}\right) \leq \alpha(a) \leq \frac{\gamma(a)}{1-\beta(a)+\gamma(a)} \leq \beta(a)
$$

In particular when the sequence a is non-increasing we have that

$$
\operatorname{dim}\left(C_{a}\right)=\alpha(a) .
$$

2) Given numbers α, β and γ such that $0 \leq \gamma \leq \alpha \leq \frac{\gamma}{1-\beta+\gamma} \leq \beta \leq 1$, then there exist a summable sequence a (that can be chosen to be nonincreasing) such that

$$
\gamma(a)=\gamma, \quad \alpha(a)=\alpha \quad \text { and } \quad \beta(a)=\beta .
$$

Given a non increasing sequence a it could happen that the $\alpha(a)$-Hausdorff measure of the associate Cantor set C_{a} is zero or infinite. In the next section we will see that we still can say something in this case.

5. Dimension function

To analyze this situation it will be useful to refine the notion of dimension in the spirit of Hausdorff's original work. Throughout this section we fix a monotonic non-increasing sequence $a=\left\{a_{k}\right\}$ of positive terms such that $\sum a_{k}=1$.

We associate to a another non-increasing sequence:

$$
\begin{equation*}
b=\left\{b_{n}\right\} \quad b_{n}=\frac{r_{n}}{n}, \quad \text { where } r_{n} \text { is as before } \quad r_{n}=\sum_{j=n}^{\infty} a_{j} . \tag{7}
\end{equation*}
$$

Define the following function h, for a decreasing function $f:[1,+\infty) \rightarrow \mathbb{R}$ such that $f(k)=b_{k}$, e.g.

$$
f(x)=b_{k}(k+1-x)+b_{k+1}(x-k), \quad x \in[k, k+1)
$$

then let

$$
h(t)= \begin{cases}\frac{1}{f^{-1}(t)} & t \in\left(0, b_{1}\right] \tag{8}\\ h(0)=0 & \text { otherwise }\end{cases}
$$

Then h is a non-decreasing, concave function and

$$
h\left(b_{k}\right)=\frac{1}{k} .
$$

This function will be useful for determining the dimension of the Cantor set C_{a}. We will need some auxiliary results and (more!) notation.

Let W denote the set of binary words of finite length:

$$
W=\{e\} \bigcup\left\{w_{1} \ldots w_{r}: w_{i} \in\{0,1\}, r \in \mathbf{N}\right\}
$$

where $\{e\}$ denotes the empty word. If $w, w^{\prime} \in W$ then $w w^{\prime}$ will denote the concatenation of w and w^{\prime}, and the length of word w will be denoted by $|w|$. Set $|e|=0$ and let W^{*} denote the set of words of positive length. Given w, either an infinite binary word or a finite binary word of length at least k, we will denote by $w(k)$ the truncation $w_{1} \ldots w_{k}$.

It is convenient to use the elements of W to describe the intervals of our Cantor set C_{a}. Let I_{e} denote the initial interval. $\left(I_{e}=I_{0}^{0}\right)$. If $w \in W$, $|w|=k$ and I_{w} is an interval of step k in the construction, then we denote
by $I_{w 0}$ and $I_{w 1}$ the left and right intervals obtained by removing the open interval from I_{w}.

In this way if I_{w} is an interval of step $|w|$,

$$
\begin{equation*}
I_{w}=I_{\sum_{j=1}^{|w|} w_{j} 2^{k-j}}^{|w|}, \tag{9}
\end{equation*}
$$

then for any $w^{\prime}, I_{w w^{\prime}}$ is an interval of step $\left|w w^{\prime}\right|$ which is related to I_{w}.
It is worthwhile to note at this stage that in the case of a monotonic nonincreasing sequence, the lengths of I_{w} also form a non-increasing sequence.

For the sequence b_{n} of 7 we will now denote by b_{w} the element of the sequence corresponding to b_{ℓ}, with $\ell=2^{k}+\sum_{j=1}^{k} w_{j} 2^{k-j}$ and $k=|w|$.

In particular note that

$$
\begin{equation*}
\text { if } \quad b_{w}=b_{2^{k}+l} \text { then } b_{w w^{\prime}}=b_{2^{k^{\prime}}\left(2^{k}+l\right)+s}, \tag{10}
\end{equation*}
$$

where $l=\sum_{j=1}^{k} w_{j} 2^{k-j}$ with $k=|w|$ and $s=\sum_{j=1}^{k^{\prime}} w_{j}^{\prime} 2^{k^{\prime}-j}$ with $k^{\prime}=\left|w^{\prime}\right|$.
Lemma 2. With the above notation, for every $k \geq 1$, and w, \widetilde{w} of length k, and any w^{\prime},

$$
\begin{equation*}
\frac{1}{2} \frac{h\left(b_{w w^{\prime}}\right)}{h\left(b_{w}\right)} \leq \frac{h\left(b_{\widetilde{w} w^{\prime}}\right)}{h\left(b_{\widetilde{w}}\right)} \leq 2 \frac{h\left(b_{w w^{\prime}}\right)}{h\left(b_{w}\right)} . \tag{11}
\end{equation*}
$$

In particular, for any w^{\prime} we have

$$
\begin{equation*}
h\left(b_{w w^{\prime}}\right) \leq 4 h\left(b_{w}\right) . \tag{12}
\end{equation*}
$$

Proof. Recall that $h\left(b_{\ell}\right)=\frac{1}{\ell}$ and let $k^{\prime}=\left|w^{\prime}\right|$. If we define

$$
l=\sum_{j=0}^{k} w_{j} 2^{k-j}, \quad r=\sum_{j=0}^{k} \widetilde{w_{j}} 2^{k-j} \quad \text { and } \quad s=\sum_{j=0}^{k^{\prime}} w_{j}^{\prime} 2^{k^{\prime}-j},
$$

then by 10

$$
\frac{h\left(b_{w w^{\prime}}\right)}{h\left(b_{w}\right)}=\frac{2^{k}+l}{2^{k^{\prime}}\left(2^{k}+l\right)+s} \quad \text { and } \quad \frac{h\left(b_{\widetilde{w} w^{\prime}}\right)}{h\left(b_{\widetilde{w}}\right)}=\frac{2^{k}+r}{2^{k^{\prime}}\left(2^{k}+r\right)+s} .
$$

Now noting that

$$
\frac{1}{2} \leq \frac{2^{k}+r}{2^{k}+l} \leq 2
$$

we obtain the desired result.
For the second inequality just note that h is non-decreasing and therefore the right-hand side is less or equal than 2 for any w^{\prime}.

These bounds of the ratios of $h\left(b_{k}\right)$ will be useful for defining a measure on C_{a}. Since the construction of this Cantor set relies on the size of the gaps, it will be useful to define a measure depending on the size of the gaps.

Proposition 6. There exists a probability measure μ_{h} supported on C_{a}, such that for every $k \geq 1,0 \leq \ell \leq 2^{k}-1$,

$$
\begin{equation*}
\frac{1}{4} h\left(b_{2^{k}+\ell}\right) \leq \mu_{h}\left(I_{\ell}^{k}\right) \leq 2 h\left(b_{2^{k}+\ell}\right) \tag{13}
\end{equation*}
$$

Proof. For $m \geq 1$ consider the probability measure μ_{m}, supported on the intervals I_{ℓ}^{m} of level m, such that

$$
\mu_{m}\left(I_{t}^{m}\right)=\frac{h\left(b_{2^{m}+t}\right)}{\sum_{j=0}^{2^{m}-1} h\left(b_{2^{m}+j}\right)}
$$

Note that, if $k \leq m$, and $w=w_{1} \ldots w_{k}$ is such that $\sum_{j=0}^{k} w_{j} 2^{k-j}=t$,

$$
\mu_{m}\left(I_{t}^{k}\right)=\mu_{m}\left(I_{w}\right)=\sum_{\left|w^{\prime}\right|=m-k} \mu_{m}\left(I_{w w^{\prime}}\right)
$$

and hence

$$
\begin{equation*}
\left(\sum_{j=0}^{2^{m}-1} h\left(b_{2^{m}+j}\right)\right) \mu_{m}\left(I_{t}^{k}\right)=\sum_{\left|w^{\prime}\right|=m-k} h\left(b_{w w^{\prime}}\right) \tag{14}
\end{equation*}
$$

But by the bounds found in 11 in the previous Lemma,

$$
h\left(b_{w w^{\prime}}\right) \leq 2 h\left(b_{w}\right) \frac{h\left(b_{\widetilde{w} w^{\prime}}\right)}{h\left(b_{\widetilde{w}}\right)}, \quad \forall \quad \widetilde{w} \quad \text { such that } \quad|\widetilde{w}|=|w|=k
$$

Hence, recalling the definition of w, we obtain (from 14), that for all \widetilde{w} such that $|\widetilde{w}|=k$,

$$
\left[h\left(b_{\widetilde{w}}\right) \sum_{j=0}^{2^{m}-1} h\left(b_{2^{m}+j}\right)\right] \mu_{m}\left(I_{t}^{k}\right) \leq 2 h\left(b_{w}\right) \sum_{\left|w^{\prime}\right|=m-k} h\left(b_{\widetilde{w} w^{\prime}}\right)
$$

and therefore

$$
\begin{aligned}
{\left[\sum_{|\widetilde{w}|=k} h\left(b_{\widetilde{w}}\right) \sum_{j=0}^{2^{m}-1} h\left(b_{2^{m}+j}\right)\right] \mu_{m}\left(I_{t}^{k}\right) } & \leq 2 h\left(b_{w}\right)\left(\sum_{|\widetilde{w}|=k} \sum_{\left|w^{\prime}\right|=m-k} h\left(b_{\widetilde{w} w^{\prime}}\right)\right) \\
& =2 h\left(b_{w}\right) \sum_{j=0}^{2^{m}-1} h\left(b_{2^{m}+j}\right),
\end{aligned}
$$

which yields

$$
\mu_{m}\left(I_{\ell}^{k}\right) \leq 2 \frac{h\left(b_{2^{k}+\ell}\right)}{\sum_{j=0}^{2^{k}-1} h\left(b_{2^{k}+j}\right)}, \quad k \leq m
$$

But noting that

$$
\frac{1}{2} \leq \sum_{j=0}^{2^{m}-1} h\left(b_{2^{m}+j}\right) \leq 1
$$

and using the other inequality of the Lemma, we finally obtain that for every $1 \leq k \leq m, 0 \leq \ell \leq 2^{k}-1$,

$$
\frac{1}{2} h\left(b_{2^{k}+\ell}\right) \leq \mu_{m}\left(I_{\ell}^{k}\right) \leq 4 h\left(b_{2^{k}+\ell}\right)
$$

Let now μ_{h} be the weak*-limit of μ_{m}, then (see for example [Mat95]) for every $1 \leq k, 0 \leq \ell \leq 2^{k}-1$,

$$
\frac{1}{2} h\left(b_{2^{k}+\ell}\right) \leq \mu_{h}\left(I_{\ell}^{k}\right) \leq 4 h\left(b_{2^{k}+\ell}\right)
$$

We are now ready to prove our main result; recall that an h-set was defined in the Introduction.

Theorem 5. Let $a=\left\{a_{k}\right\}$ be a non-increasing sequence of positive terms such that $\sum a_{k}=1$ and C_{a} the associated Cantor set. Then C_{a} is an h-set. Moreover

$$
\frac{1}{32} \leq H^{h}\left(C_{a}\right) \leq 1
$$

where H^{h} is the Hausdorff measure associated to h, and h is the dimension function defined in 8.

Proof. For the upper bound, let $\delta>0$ and let n_{0} be such that $n \geq n_{0}$, $r_{n}=\sum_{j \geq n} a_{j}<\delta$. Then the intervals E_{1}, \ldots, E_{n} that are the remaining intervals after the gaps associated to a_{1}, \ldots, a_{n-1} are removed, are a δ covering of C_{a}, and since h is concave, we have

$$
\sum_{i=1}^{n} h\left(\left|E_{i}\right|\right) \leq n h\left(\frac{\left|E_{1}\right|+\cdots+\left|E_{n}\right|}{n}\right)=n h\left(\frac{r_{n}}{n}\right)=1
$$

and therefore $H^{h}\left(C_{a}\right) \leq 1$.
For the lower bound, the idea is to try to use the measure μ_{h}, and apply a generalized version of the Mass transfer principle.

For this, let U be any open set, and let $\operatorname{diam}(U)=\rho<1$. Let $k \geq 1$ and $0 \leq \ell \leq 2^{k}-2$ be such that

$$
\begin{equation*}
b_{2^{k}+\ell+1} \leq \rho<b_{2^{k}+\ell} \tag{15}
\end{equation*}
$$

(the case that $b_{2^{k+1}} \leq \rho<b_{2^{k+1}-1}$ will be considered separately). Then, because the length of the intervals I_{l}^{k} is a non-increasing sequence

$$
\rho<b_{2^{k}}=\frac{\left|I_{0}^{k}\right|+\cdots+\left|I_{2^{k}-1}^{k}\right|}{2^{k}}<\left|I_{0}^{k}\right| .
$$

Then U can intersect at most 2 consecutive intervals of step $k-1$. Hence

$$
\begin{aligned}
\mu_{h}(U) & \leq\left(\mu_{h}\left(I_{t}^{k-1}\right)+\mu_{h}\left(I_{t}^{k-1}\right)\right) \quad \forall 0 \leq t \leq 2^{k}-2 \\
& \leq 4 h\left(b_{2^{k-1}+t}\right)+4 h\left(b_{2^{k-1}+t}\right) \quad \text { by the Proposition } \\
& \leq 8 h\left(b_{2^{k-1}}\right) \\
& \leq 32 h\left(b_{2^{k}+\ell+1}\right) \quad \text { by } 12 .
\end{aligned}
$$

Therefore since h is non-decreasing,

$$
\mu_{h}(U) \leq 32 h\left(b_{2^{k}+\ell+1}\right) \leq 32 h(\operatorname{diam}(U))
$$

Assume now that ρ is such that $b_{2^{k+1}} \leq \rho<b_{2^{k+1}-1}$. Since $\rho<b_{2^{k}}$, we still have

$$
\mu_{h}(U) \leq 8 h\left(b_{2^{k-1}}\right)=8 \frac{1}{2^{k-1}}=32 \frac{1}{2^{k+1}}=32 h\left(b_{2^{k+1}}\right)
$$

and so again,

$$
\mu_{h}(U) \leq 32 h(\operatorname{diam}(U))
$$

Therefore, if $\left\{U_{k}\right\}$ is a δ-covering of C_{a}, we have

$$
\sum_{k} h\left(\operatorname{diam}\left(U_{k}\right)\right) \geq \frac{1}{32} \sum_{k} \mu_{h}\left(U_{k}\right) \geq \frac{1}{32} \mu_{h}\left(C_{a}\right)
$$

Since this is true for every δ-covering, we obtain:

$$
H_{\delta}^{h}\left(C_{a}\right) \geq \frac{1}{32} \mu_{h}\left(C_{a}\right), \quad \text { and therefore } \quad H^{h}\left(C_{a}\right) \geq \frac{1}{32}
$$

Among all the dimension functions, one can also establish a certain equivalence relation, namely $h \equiv g$ if there exist constants c_{1} and c_{2} such that

$$
c_{1} \leq \varliminf_{x \rightarrow 0+} \frac{h(x)}{g(x)} \leq \varlimsup_{x \rightarrow 0+} \frac{h(x)}{g(x)} \leq c_{2} .
$$

The following result relates the function h to $\alpha(a)$.
Proposition 7. If $a \sim \frac{1}{n}^{1 / s}$ then $h \equiv x^{s}$.
Proof. Since $a \sim \frac{1}{n}^{1 / s}, \gamma(a)=\beta(a)=s$, and hence there exist $c>0$ and $d>0$ such that

$$
c \leq \frac{\left(\frac{1}{n}\right)^{1 / s}}{a_{n}} \leq d \quad \forall n
$$

and therefore

$$
a_{n} \leq c^{\prime}\left(\frac{1}{n}\right)^{1 / s} \quad \text { and therefore } \quad \frac{r_{n}}{n} \leq C\left(\frac{1}{n}\right)^{1 / s}
$$

Analogously,

$$
a_{n} \geq d^{\prime}\left(\frac{1}{n}\right)^{1 / s} \quad \text { and therefore } \quad \frac{r_{n}}{n} \geq D\left(\frac{1}{n}\right)^{1 / s}
$$

Hence

$$
c_{1} \leq \varliminf_{x \rightarrow 0+} \frac{h(x)}{x^{s}} \leq \varlimsup_{x \rightarrow 0+} \frac{h(x)}{x^{s}} \leq c_{2} .
$$

References

[BT54] A. S. Besicovitch and S. J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449-459.
[Bor49] Émile Borel, Éléments de la Théorie des Ensembles, Éditions Albin Michel, Paris, 1949.
[CHM03] C. Cabrelli, K. Hare, and U. Molter, Some inequalities for the dimension of Cantor sets. Preprint 2003.
[CMPS03] C. Cabrelli, U. Molter, V. Paulauskas, and R. Shonkwiler, The Hausdorff dimension of p-Cantor sets, Real Analysis Exchange. To appear, 2003.
[Fal97] K. J. Falconer, Techniques in fractal geometry, John Wiley \& Sons, New York, 1997.
[Hau19] F. Hausdorff, Dimension und äusseres Maß, Mathematische Annalen 79 (1919), 157-179.
[Mat95] P. Mattila, Geometry of sets and measures in euclidean spaces, Cambridge University Press, Cambridge, 1995.
[Rog98] C. A. Rogers, Hausdorff measures, second ed., Cambridge University Press, Cambridge, UK, 1998.
[Tri81] Claude Tricot, Douze définitions de la densité logarithmique, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 11, 549-552.
[Tri95] , Curves and fractal dimension, Springer-Verlag, New York, 1995, With a foreword by Michel Mendès France, Translated from the 1993 French original.

Received Received date / Revised version date

Departamento de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria, Pabellón I
1428 Capital Federal
ARGENTINA
and CONICET, Argentina
E-mail address: cabrelli@dm.uba.ar

Mathematics Department
Acadia University
Wolfville, Nova Scotia B4P 2R6

E-mail address: franklin.mendivil@acadiau.ca
Departamento de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria, Pabellón I
1428 Capital Federal
ARGENTINA
and CONICET, Argentina
E-mail address: umolter@dm.uba.ar
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332
E-mail address: shenk@math.gatech.edu
www.math.gatech.edu/~shenk
Carlos Cabrelli is partially supported by Grants: PICT-03134, and CONICET, PIP456/98.
Franklin Mendivil was partially supported by NSERC.
Ursula Molter is partially supported by Grants: PICT-03134, and CONICET, PIP456/98.

