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Abstract

A stochastic growth and division model for studying a two hit cancer is developed

and applied to retinoblastoma. Retinoblastoma occurs if both genes coding for a tumor

suppressor protein on homologus chromosomes become defective. Germinal cases occur

when a patient or carrier, born with one defective gene, suffers a second insult to any

progeny retinal cell. Somatic cases are far less likely as two hits to the same cell during

development are required.

Details of the disease, germinal or somatic, unilateral or bilateral, in combination

with case data allow for the estimation of the two parameters of the model: mutation

rate, estimated at p = 7× 10−7 per chromosome per cell division, and carrier frequency,

estimated at f = 40 per million. The model indicates that carriers of the disease arise

from similar mutations to germ cells; in particular, heridary transmission can occur for

only a generation or two before dying out.

The results show that a stochastic simulation of a multi-hit cancer is feasible and

may predict tumor growth dynamics. A simulation run will have to consist of a few

million cells in order to observe even a small number of mutations. And several dozens

such runs will have to be simulated.
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1 Introduction

It is currently believed that cancer is a multi-stage disease which develops within a cell as

the result of a succession of mutations [1]. Each mutation breaks another thread of control

over the cell’s latent reproductive machinery. Each mutation gives rise to a clone of similarly
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mutated cells that are now ripe for further mutations. In this way the disease progresses in

steps toward malignancy.

A mathematical model may be formulated for such a multi-stage progression but such

a model is too complicated to be analyzed analytically with mathematical tools. However,

if there were only one stage to onset of the disease, then an analytical solution is feasible.

Retinoblastoma is one of the simplest cancers in that it is believed to be the result of a single

mutation only.

In this article we investigate a growth and division mathematical model for retinoblastoma

incorporating the possibility of a single mutation. The probability of such a mutation during

cell division is a parameter of the model which we denote by p. An altered cell then gives rise

to a clone of itself which we take to be a tumor. We will see that retinoblastoma incidence data

is consistent with this hypothesis. What is remarkable is that so simple a model can predict

the disease so well. The success of this model indicates that modeling more complicated

cancers should be undertaken, perhaps via simulation.

Retinoblastoma

Retinoblastoma is among the better understood cancers and serves as a paradigm for the

generic basis of the disease. Several studies indicate that this cancer is initiated if both

genes, lying on homologous chromosomes, coding for a single protein become dysfunctional

during the growth period of the retinal tissue. This period of time is early childhood and

retinoblastoma is a disease of early childhood.

The single gene in question codes for the tumor suppressor protein Rb. Thus if this protein

is absent from the cell during its growth phase, unchecked growth ensues for that cell, and for

the clone of cells it begets, resulting in a tumor. Referring to the process of rendering a gene

dysfunctional as a “hit,” there are two distinct ways in which a cell can suffer the required two

hits. The first is that some retinal cell of a normal individual suffer two hits purely by chance.
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This unlikely event is thought to account for 60% of the incident rate of retinoblastoma.These

are called somatic cases.

The other possibility is that an individual inherit a defective gene for the disease; such a

person is called a carrier. In this event, every retinal cell has already one hit. If, during the

growth phase of the retinal tissue, a mutation occurs to any cell, then that cell will have 2

hits and tumor growth ensues. These are called germinal cases and account for the balance

of the cases, about 40%.

Previous studies

Retinoblastoma has been mathematically modeled before. In a series of papers Knudson and

co-authors have undertaken this investigation, [2-4]. These purely mathematical studies lead

to the discovery of tumor suppressor proteins [5]. The original model by Knudson assumes

that the retinal tumor cells appear randomly selected from a static retinal tissue according to

a Poisson distribution with parameter m = 3. (Recall the parameter of a Poisson distribution

is also the mean of the distribution, hence the average number of tumors per case is 3.) Any

selected cell undergoes a mutation to one of its retinal tumor suppressor genes. What is

striking about the model is its simplicity, there are only two parameters, m and the total

number N of retinal cells, and yet the model fits the data quite well – namely it explains the

occasional gene carrier who gets no tumor, those who develop only unilateral tumors, and

those who develop bilateral tumors. The parameter N is reported to be about 4 million or

about 2 million retinal cells per eye [7].

Table 1

Patient data

Retinoblastoma cases as shown in Table 1, repeated from [2], are observed as to sex, onset age,

laterality, that is which eye holds tumors, number of tumors and family history of the disease.
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We conceptualize the case data as to “onset data,” meaning data pertaining to temporal

information, and “summary data” referring to the rest, mostly statistical summaries. Onset

data involves diagnosis delay and adds a great complication to the data analysis. For this

reason we will use the summary data (see Table 2) for the most part to validate our model.

The summary data is comprised of 13 statistic none of which depend on observation time;

these include carriers never affected, the average number of tumors among germinal cases,

unilateral cases among germinal cases and others. These data, also reported in [2], are shown

in Table 2.

Growth and Division Model

Our model differs from those of Knudson in that we track the growth of the retinal tissue from

a single cell through repeated cell divisions. Each cell division is accompanied by the risk of

a mutation. This approach allows for the prediction of several statistical consequences of the

disease, see Table 2, including the prediction of the frequency of carriers within the general

population, denoted by f , and the persistance of the disease among carriers.

In this work we impose a fixed time growth period followed by a cell division. Thus

division takes place at the discrete times t = 1, 2, . . . , T . As a consequence cell generations

are synchronized, at any given time, all cells are of the same generation. Nevertheless this

simple model fits the data quite well.

In the next section we apply the model to the summary patient data to determine model

parameters and for validation. This data, derived from Table 1, is shown in Table 2. The

equations of the model are derived in the Appendix.

Table 2
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2 Application to the data

First we calculate the number of cell divisions T required produce the 2 million retinal cells

per eye. Let N(t) be the number of cells at time t. According to the model, N(t+1) = 2N(t)

and N(0) = 1. Hence

N(t) = 2t. (1)

Thus for t = 22, N = 4194304, which is approximately the required number. In the sequel

we will assume there are T = 22 generations. Note that this number is consistent with the

telomere theory of cell senescence which states that telomeres shorten upon each cell division

and after, variously 22 to 40 cell divisions, the telomeres are too short to permit further

divisions.

Next we estimate the mutation probability. Using (7) of the Appendix, in conjunction

with statistic 1, carriers never affected, which should be about 5%, we get a value for p,

.05 = x0(22) = (1 − p)222
−1, log(1 − p) =

log(.05)

222 − 1
= −.00000071423823202943,

and (1 − p) = .99999928576202303864 so p = 7.14 × 10−7.

From this, equation (6) of the Appendix gives the expected number of tumors in the

germinal case as 2.99. Note this is essentially the same as Knudson’s figure.

Derived in the Appendix as equation (11), the infinite series, denoted by a for convenience,

is

a = x1(22) +
1

2
x2(22) +

1

22
x3(22) + . . . . (2)

This gives the number of unilateral cases among germinal cases. Using equations (8) – (10)

and substituting the values obtained above, gives statistic 3 as 0.337. Of course statistic 4,

bilateral cases among germinal cases, is the complement of this at 0.663.

As introduced above, let f denote the fraction of carriers in the general population. This

statistic was not derived by Knudson. Knowing f would allow us to estimate the other
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statistics. Or we can use one of them to find f and then estimate the rest. We will estimate

the value of f using the most reliable of the statistics which depend on it, this is 5, the fraction

of cases which are bilateral; denote this fraction by B. As in Table 2, let u be the incidence

rate among non-carriers, i.e. that some cell suffers two hits. And as in the Appendix, let

x0(22) be the probability a carrier never contracts the disease. Therefore the incidence rate

of retinoblastoma, counting both germinal and somatic cases, is given by

f(1 − x0(22)) + (1 − f)u,

Since we are assuming 100% of the unilateral cases are somatic, statistic 13 of Table 2, we

have for B

B =
f(1 − a)

f(1 − x0(22) + (1 − f)u
.

In this, the expression in the numerator multiplying f is the fraction of germinal cases which

are bilateral, as worked out above this is 1 − a. Using 27% for the value of B and 30 per

million for u, we get

f =
Bu

1 − a + Bu − B(1 − x0(22))
= 0.000023.

On the other hand, the value of u may be derived from p as shown by equation (12) in

the Appendix. Taking p = 7.14 × 10−7 predicts the incident rate of somatic cases among

the general population to be u = 0.000040 or 40 per million. In turn this value of u gives

f = 0.0000274. An incident rate of u = 30 per million is predicted when p = 6.14 × 10−7.

The remaining statistics are simple expressions in terms of these. The fraction of germinal

cases among all cases is calculated by

f(1 − x0(22))

f(1 − x0(22)) + (1 − f)u
= 0.387.

Of course the somatic cases are the complement fraction.
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The fraction of all cases which are unilateral is given by the sum of the germinal and

somatic ones divided by all cases,

fa + (1 − f)u

f(1 − x0(22)) + (1 − f)u
= 0.750.

The fraction of unilateral germinal cases among all cases is given by

fa

f(1 − x0(22)) + (1 − f)u
= 0.137.

And finally the fraction of unilateral cases which are germinal is given by

fa

fa + (1 − f)u
= 0.183.

3 Persistence of Germinal Cases

It is natural to wonder how germinal cases arise, familial or new. In this section we show that

carriers are not persistent in society in that the genetic defect lasts at most two generations

normally. Therefore the condition is also the result of a chance mutation.

Let qk be the probability that a carrier zygote will survive and beget k offspring who are

also carriers and let F (s) = q0 + q1s + q2s
2 + . . . be the probability generating function for

the qk. To compute the qk we also need the probabilities ci that a surviving carrier will beget

i offspring. Finally let p0 be the probability that a carrier will survive to adulthood, taken as

0.05 from Table 2.

Assuming that a carrier mates with a non-carrier, note that
(

i

k

)

/2i is the probability that

a mating resulting in i offspring will consist of k carriers and i − k non-carriers. Then

p0ci

(

i

k

)

1

2i

is the probability that a newly born carrier will survive to adulthood, have i offspring and k

of them will be carriers. Sum this over i = k, k + 1, . . . to get qk,

qk = p0

(

ck

1

2k
+ ck+1

(

k + 1

k

)

1

2k+1
+ ck+2

(

k + 2

k

)

1

2k+2
+ . . .

)

, k > 0.
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The case k = 0, begetting no carrier offspring, is slightly different,

q0 = 1 − p0 + p0(c0 + c1

1

2
+ c2

1

22
+ . . .).

Now it is well known that a trait will persist with probability 1 − L, and die-out with

probability L, where L is the smallest fixed point of F , i.e. smallest solution of F (L) = L, see

[6]. Since already F (0) = q0 > 0.95; L must be very close to 1.

Actually, L < 1 if and only if the derivative F ′(1) ≥ 1. But F ′(1) = q1 + 2q2 + 3q3 + . . .

and since each term is multiplied by p0 = .05, even with extraordinary high values of the ci

for large i, F ′(1) will be less than 1. For example, suppose c5 = 1, i.e. an average carrier has

5 children. Then qk = .05
(

6

k

)

/26, k = 1, . . . , 6 and F ′(1) = 192/1280.

4 Conclusions

The discrete growth and division model examined in this paper adequately explains all the

observed frequency and incidence data for cases of retinoblastoma. Hence a two hit model for

the initiation of this cancer, with a mutation rate on the order of 7 × 10−7 per chromosome

involving the critical gene, is consistent with the observed data.

The results also show that a growth and division stochastic simulation of this disease is

feasible and will give good results. However, in view of the order of magnitude of the mutation

rate, a simulation run will have to consist of a few million cells in order to observe even a

small number of mutations. Moreover, to obtain statistical information, several dozens such

runs will have to be simulated. Therefore such a simulation will entail a large computational

effort. Furthermore, the same will be true to an even greater extent for simulations of more

complicated cancers.

Finally, the probability of persistence of carriers through several generations is very low

and hence the disease reoccurs mainly as a result of somatic cases.
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5 Appendix: Derivation of the Equations

The model assumes retinal tissue starts from a single cell which, together with its progeny,

repeatedly divides until the requisite number of cells are formed. For each cell, independently

of the others, division takes place upon waiting 1 time unit and gives rise to two daughter

cells. Thus cell generations are synchronous. We ignore cell death. The two daughter cells are

genetically the same as their shared parent excepting that, with probability p, one of them

has mutated. A mutant cell then begets a clone of like cells.

Germinal Case

Should a mutation occur to some retinal cell of a carrier, the result is a doubly mutated cell

and hence a tumor. We are not interested in the number of such doubly mutated cells per se

but rather in the number of tumors which here is the same as the number of mutation events

occurring to the growing tissue. Let X(t) be the random variable denoting the number of

tumors at time t, and put xk(t) = Pr(X(t) = k), k = 0, 1, 2, . . ., the probability there are

k tumors at time t. Also let G(s, t) =
∑

0 xk(t)s
k be the probability generating function for

the xk. The outcome at time t is influenced by what happens on the first cell division; there

are two possibilities, either a mutation occurs or not. If no mutation occurs, then to have k

mutations at time t, they must occur in the remaining t − 1 cell divisions; otherwise k − 1

mutations must occur in the remaining t−1 cell divisions. Let Pr(A |B) denote the probability

of event A given that event B has occurred. If event A is influenced by two mututally exclusive

events B and C, we can write, Pr(A) = Pr(A |B) Pr(B) + Pr(A |C) Pr(C). In our derivation,

by conditioning on the possibilities on the first cell division, we can write

xk(t) = Pr(k tumors at t | none at 1) Pr(no mutation at t = 1)

+ Pr(k tumors at t |mutation occurs at t = 1) Pr(a mutation at t = 1) (3)
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Recall that p is the mutation rate or, in this context, the probability that a mutation occurs

during a cell division. Thus 1− p is the probability a mutation does not occur. If a mutation

does not occur during the first cell division, then the two daughter cells go on to produce cell

lines and together these must result in k mutations. This could happen in many ways, for

example, one could produce 3 mutations and the other k − 3 mutations. In general, one cell

line could produce k1 mutations and the other k2 so long as k1 + k2 = k. Therefore the first

term of the equation above is given by

Pr(k tumors at t | none at 1) = (1 − p)
∑

k1+k2=k

xk1
(t − 1)xk2

(t − 1). (4)

The other is simply pxk−1(t − 1). Thus substituting into (3) we get

xk(t) = (1 − p)
∑

k1+k2=k

xk1
(t − 1)xk2

(t − 1) + pxk−1(t − 1).

Multiply both sides by sk and sum over k to get

∞
∑

k=0

xk(t)s
k = (1 − p)

∞
∑

k=0





∑

k1+k2=k

xk1
(t − 1)xk2

(t − 1)



 sk + ps
∞
∑

k=1

xk−1(t − 1)sk−1

which gives

G(s, t) = (1 − p)G2(s, t − 1) + spG(s, t − 1). (5)

(Multiply out G(s, t − 1) by itself to see that one gets the sum in (4).)

From the generating function we can feasibly calculate many of the properties of interest.

One example is expectation. The expected number of tumors, E(X(t)) is given by

E(X(t)) =
∂G

∂s

∣

∣

∣

∣

s=1

= 2(1 − p)G(1, t − 1)
∂G(1, t − 1)

∂s
+ pG(1, t − 1) + p

∂G(1, t − 1)

∂s
.

Remembering that G(1, t) = 1 for all t gives the following recursion equation and initial value

E(X(t)) = (2 − p)E(X(t − 1)) + p, E(X(1)) = p.
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This is easily solved to give

E(X(t)) =
p

1 − p

(

(2 − p)t − 1
)

. (6)

We also calculate some individual probabilities.

Since x0(t) = G(0, t), substituting s = 0 in (5) gives the recursion equation and initial

value

x0(t) = (1 − p)x2

0(t − 1), x0(1) = 1 − p.

This is the probability of being tumor free at time t and is also easily solved,

x0(t) = (1 − p)2t
−1. (7)

In similar fashion one obtains the probability that there will be one tumor, x1(t). From

the definition of the generating function x1(t) = ∂G
∂s
|s=0

. Differentiating (5), setting s = 0 and

using (7) gives

x1(t) = 2(1 − p)x0(t − 1)x1(t − 1) + px0(t − 1)

= (1 − p)2t−1
−1 [2(1 − p)x1(t − 1) + p] , x1(1) = p. (8)

While this equation, and to a greater extent, those for the higher order probabilities which

we obtain next are hard to solve in closed form, they present no difficulty numerically.

Likewise, from the fact that ∂nG
∂sn |s=0

= n!xn, we obtain the recursion equations below for

x2 through x3 along with their starting values,

2x2(t) = 2(1 − p)[x0(t − 1)x2(t − 1) + x2

1(t − 1)]

+2px1(t − 1), x2(1) = 0, (9)

3!x3(t) = 2(1 − p)[3!x1(t − 1)x2(t − 1) + 3!x0(t − 1)x3(t − 1)]

+3!px2(t − 1), x3(1) = 0, (10)
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One use of these is to calculate the number of unilateral cases among germinal cases. This

is given by the infinite series

x1(22) +
1

2
x2(22) +

1

22
x3(22) + . . . (11)

evaluated at t = 22 since as we have seen, there are 22 cell divisions. This equation is seen as

follows. First any single mutation is unilateral giving the first term. Then, with probability

1/2, two mutations will occur in the same eye giving the seond term and with probability 1/4

three will occur in the same eye and so on.

Somatic Case

Let rn,0(t) = Pr(there are n cells with a single mutation but no tumors at time t). What we

want to calculate is the probability there will be no tumors and this is the sum
∑

∞

n=0 rn,0(t).

Let h(s, t), denote the probability generating function for the r.

h(s, t) =
∑

n

rn,0(t)s
n.

By decomposition on the possibilities at t = 1, we get

rn,0(t) = Pr(n w/ single mut., no tumor at t | a mutation at 1)2p+

Pr(n w/ single mut., no tumor at t | no mutation at 1)(1 − 2p)

= 2px0(t − 1)rn−2t−1,0(t − 1) + (1 − 2p)
∑

n1+n2=n

rn1,0(t − 1)rn2,0(t − 1).

This is seen as follows, if a mutation occurs at t = 1, the resulting clone acts just like the

germinal case where we learned that the probability no (additional) mutation will occur is

x0(t − 1). Furthermore, since this clone will produce 2t−1 cells each with a single mutation,

the other branch must produce n − 2t−1 single mutation cells. The other term is what we’ve

seen before. Note that we are using 2p instead of p for the first mutation probability since

there are two chromosomes per cell at risk. (The exact value 2p− p2 is well approximated by

2p.) As usual, multiply both sides by sn and sum over n to get

h(s, t) = 2px0(t − 1)s2t−1

h(s, t − 1) + (1 − 2p)h2(s, t − 1).
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Note that here, the probability generating function h is not 1 at s = 1. Instead, h(1, t) =

∑

∞

n=0 rn,0(t) and this is exactly the probability there will be no doubly mutant cell by time

t as decomposed over all possible ways there could be n singly mutant cells; this is what we

want to calculate here. Let u = 1−h(1, 22), then u is the probability of a somatic case. From

above, the recursion equation for h(1, t) is

h(1, t) = 2px0(t − 1)h(1, t − 1) + (1 − 2p)h2(1, t − 1). (12)
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Birkhaüser-Boston, Boston, MA 1996.

[7] Van Buren, J. M., The Retinal Ganglion Cell Layer, Charles C Thomas, Springfield, IL
1963.

13


