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Abstract

We introduce several enhancements to a cohort model for predicting the parasitemia
of malaria. The cohort model has undergone development over half a century by Muench,
Aron and May, and Aron. To this we incorporate: time dependent immunity (TDI),
temporary immunity, superinfection, and resistant strains of parasites. The TDI model
is an attempt to reproduce the extended duration of parasitemia often shown in studies
of malaria. We also investigate how superinfection compares as an alternative to TDI
in this regard.

All the models have a unique equilibrium and are globally asymptotically stable.
We show they are consistent with the dynamics of the disease and obtain remarkably
good agreement to the Wilson and Garki Project data sets. We use the TDI model as
a baseline study to investigate the individual effects of the parameters.

Among other conclusions we find that the relatively small class of partial immunes
are mostly responsible as the link for transmitting the disease to mosquitoes, and that,
even though the fraction of mosquitoes harboring resistant parasites may be small envi-
ronmentally, nevertheless they constitute the major parasite load among infecteds.
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1 Introduction

Malaria is a mosquito-borne infection caused by protozoa of the genus plasmodium. Four
species of the parasite, namely: P. falciparum, P. vivax, P. ovale, and P. malariae infect
humans. Malaria remains the most important of the tropical diseases, being widespread
throughout the tropics, but it also occurs in many temperate regions. It is estimated that 267
million people are presently infected, with 107 million clinical cases annually; the number of
countries affected is put at 103 [1].

The parasites are transmitted by the bite of infected female mosquitos of the genus Anophe-
les. Clinical symptoms such as fever, pain, chills and sweats may develop a few days after an
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infected mosquito bite. The duration of infection depends on such factors as the degree of
infection, method and time of treatment, resistivity of parasites to drugs, biology of the host
etc. An important aspect of malaria is that where the disease has long been highly endemic,
as in many parts of Africa, people are infected so frequently that they develop a degree of
acquired immunity, and may become asymptomatic carriers of the infection [2, 3].

The biology of the four species of plasmodium is generally similar and consists of two
distinct phases: sexual and asexual. In addition, the asexual phase consists of at least three
forms: sporozoites, merozoites, and trophozoites. During the bite by an infected mosquito,
parasites in the sporozoite stage enter the victims blood stream carried along with the insects
saliva. This must be, at least, its second blood meal as the mosquito itself was infected
beforehand. The filimentous and motile sporozoites migrate to the liver and invade a variety
of liver cells. Here they replicate giving rise to the merozoite form at about the time the
hosts natural defenses begin to attack the infected cells. In about 7 days time, a few tens of
thousands of merozoites are released from each infected liver cell into the blood stream. There,
the merozoites attack and invade red blood cells whereupon they become the trophozoite form.

This form also undergoes asexual division and in approximately 48 hours, depending on
species, bursts the red blood cell releasing more merozoites into the blood stream. This
activity is responsible for the clinical symptoms of the disease. These stages are synchronous
among broods of the parasite.

Some merozoites differentiate into the sexual forms of the parasite, either male or female,
called gametocytes. Gametocytes, which can remain in the blood for more than two years
[5], are transmitted to a mosquito during the blood meal of an infected person. Gametocytes
complete the life cycle in the gut of the mosquito resulting in sporozoites which migrate to
the insects salavary gland to repeat the cycle.

Among the four species of plasmodium, P. falciparum causes the most serious illness and
it is the most widespread in the tropics. This paper therefore focuses on the dynamics of P.
falciparum malaria, although the analysis is similar for all forms of malaria infections.

Our objective in this work is to compare and enhence several different models predicting
the age dependent prevalence of parasitemia. For this purpose we will use common source,
multi-compartmental models. This idea is not new; for the purpose of estimating infection
and recovery rates, Macdonald [4] used a model in which he assumed the amount of infective
material to which the population is exposed remains unchanged. Such models were also
introduced in Muench [5], Aron and May [6], and Aron [7, 8]. One factor influencing this
choice is that the feedback dynamics from mosquito to man and back to mosquito involves
considerable delay, mostly due to the incubation periods of the several forms of the parasite;
consequently, the dynamics of the disease over these periods of time are in fact common source,
see [9]. Also, in certain cases, it has been observed that the incidence of infected mosquitoes



remains very close to 3 per cent under widely varying circumstances thus constituting an
approximately steady threat ([2, 6]).

Common Source Model

The Muench “catalytic” model divides the population into three groups: susceptibles or those
who may contract the disease, infecteds or those infected and experiencing severe symptoms,
and partial tmmunes or those infected but experiencing only mild symptoms. The model
postulates that the mildly symptomatic can arise only from the severely symptomatic. The
mildly symptomatic can not be reinfected as long as their immunity lasts. Hence, as noted,
they are often referred to as partial immunes although this group is capable of transmitting
the parasite to uninfected mosquitos. Denote by z, y and z, respectively, the relative size of
each group; the catalytic, or SIR, model is ‘fi—f = —hz, % = hx — ry, and ‘fi—‘z = ry. The model
tracks the experience of a birth cohort moving through time with ¢ representing the age of the
group. The parameter h is the infection rate, and r the acquired immunity rate. Hence 1/h
is the mean time until infection, and 1/r the mean time until immunity. The initial condition
is taken as x(0) = 1, and y(0) = 2(0) = 0. It is assumed throughout that

z(t)+yt)+z2()=1 t>0, (1)

implying that mortality acts approximately equally on all groups.

Aron and May [6] modified the model to an SIRS type by adding a return path of magnitude
vz from the partial immunes back to the susceptibles. Furthermore 7 is taken as a function of
h in deference to the observation by many, that the greater the endemicity of the disease, the
greater the extent of immunity among the population (see e.g. [10]). Thus 7 should decrease
with increasing h. The exact relationship is in terms of a parameter 7 and takes the form

he—hT
v(h) = 1_ o hr’ (2)

see Fig. 1. It is derived under the assumption that infective exposures arrive as a Poisson
process with a mean constant rate of h and that partial immunity lasts an interval of 7 units
of time. If a person is re-exposed before this time has elapsed, then partial immunity is
sustained and another interval of duration 7 without exposure is required before return to the
susceptible group.

Aron [?] further modified the model by adding an immediate return path, py, back to the
susceptibles following the concept that partial immunity is not immediately acquired. The
Aron model then is

dx

o = ~hatpy+a(h)z
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Figure 1. v as a function of h for various 7.

d

d—g; = hx —py —ry, (3)
d

d—j = ry—~y(h)z.

The recovery rate p corresponds to how quickly parasites are cleared from the body. High
recovery rates are associated with drug treatments.
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Figure 2. Garki project data. U refers to the controls, P to the treated.

The point of these efforts is to demonstrate qualitative agreement with observed prevalence
data as measured by parasitemia. In particular, to predict a certain cross-over effect reported
by L. Molineaux and G. Gramiccia [11], the “Garki Project” data, see Fig. 2, By aggressively



treating an entire population at risk over a two year period of time, these investigators reported
that prevalence decreased at first but then rose to higher levels than controls upon cessation
of treatment. That is, the prevalence curves crossed-over each other. Mathematically, this
effect is achieved by the aforementioned link between  and h, equation (2).
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Figure 3. Wilson Data, urban vs rural prevalence

Another relevant data set is reported by Wilson [12] comparing prevalence in urban areas
versus that in rural communities. As noted, rural victims have much less access to drugs as
compared to their urban counterparts. This accounts for their higher level of prevalence, see
Fig. 3. We note the strong similarity between the untreated group in the Garki Project data
and the rural group of the Wilson data.

Other factors of concern about the disease include density dependent immunity and su-
perinfection. Aron and May [6] postulate that a density dependent model will be required
to accurately model the Garki Project data in particular. The data exhibits extended para-
sitemia with a prevalance exceeding 50% up to age 28, then becoming nearly constant at the
equilibrium level. However model dynamics show parasitemia falling off immediately after
peaking out at an early age. But in Section 2 we show that by modifying the immunity term,
r to be time dependent, accurate tracking of this data is possible, see Fig. 5. We refer to this
as the time dependent immunity (TDI) model. It also tracks Wilson urban data as well, see
curve C of Fig. 6.

In Section 3 we modify the Aron model by adding another group, the temporary immunes
of size w. They differ from the partial immunes in that they are completely cured but still
have immunity; they do not infect mosquitos. This group serves as a waiting period between
cure and susceptibility. It is unrealistic in some cases to suppose that individuals could
be completely cured and become susceptible again immediately. It is seen by this model



that the partial immunes together with the temporary immunes act in exactly the same
way as the partial immunes by themselves in the Aron model. Thus the major impact of
this model is to indicate that a lesser proportion (than postulated by earlier authors) of the
population is directly responsible for the transmission of the disease since the infection is
primarily transmitted to mosquitos by the partial immunes. This effect is similar to the
“core” endemic subgroup of the population observed by Lajmanovich and York [13] in their
gonerrhea study, serving as a reservoir for the infection.

In Section 4 we investigate a superinfection model in which infecteds sustain several broods
of parasites due to repeated infectious bites. Our inquiry is whether this model can be an
alternative to TDI as a means of extending parasitemia as noted above. Experimentally we
were not able to obtain the effect by superinfection alone. However by incorporating a recovery
delay for each addtional brood, parasitemia extension reappears.

Section 5 deals with the problem of drug resistant strains of malaria parasites. While the
models above deal largely with the natural course of the disease, in this section we assume the
entire population is treated. Treatment and control have become more difficult in recent years
with the spread of these strains [1, 2, 3]. Drugs such as chloroquine, nivaquine, quinine, and
fansidar are used for treatment. More recent and more powerful drugs include mefloquine,
and halofantrine. The model is seen to contain some of the previous ones as special cases.
Furthermore this STRS model is likened to describing an infection in which all infecteds have
an initial treatment failure with a certain drug.

The problem of drug resistance in malaria has also been examined by other authors, [9, 14].
In [9] the authors study sensitive versus resistant infection allowing for a proportion of hosts
to be treated. This leads to the conclusion that competitive exclusion takes place between
the strains; which predominates depends on the proportion of hosts treated, the effectiveness
of treatment, and the cost of resistance to the parasite in terms of transmission rate. In [14]
the study is more of a genetic one tracking the proportion of resistant alleles with up to 50
strains of resistant parasites. An individual is assumed to be infected by several strains at the
same time and thus is superinfected. Sensitive strains are assumed to be eliminated in that
individual by the drug.

Here we expand on the compartmental model of the earlier sections and in so doing follow
the approach taken in [15]. The model predicts, as expected, that the major infection quickly
becomes that of the resistant parasite while infection by the sensitive parasite drops nearly to
zero. Nevertheless, if the drug is effective, the overall infection drops by about half.

General remarks about the mathematical techniques.

All the models presented here are differential equation systems belonging to the class of
compartmental systems with no inflow. The behavior of such systems is well-known. Since the



flow matrix, comprising the right-hand side, is singular with defect dimension 1 (the columns
sum to zero), solutions tend to the one-dimensional singular set [16]. However solutions must
also satisfy the summation condition (1) and hence remain on the corresponding hyperplane.
As a result, solutions tend to a unique globally asymptotically stable equilibrium.

As usual in fitting a model to data, we attempt to minimize least square error. However,
here, the least square error depends in a highly non-linear way on the parameters necessitating
the use of stochastic search methods. For this we use Genetic Algorithms which is by now,
well-studied, see [17].

2 Time Dependent Immunity (TDI) model

We start from the Aron model (3). Understanding that immunity is acquired and develops over
time with exposure, we allow the immunity acquisition rate, r to be time dependent, r = r(t).
Our assumptions are that immunity is initially nil, 7(0) = 0, that, upon exposure, there is
a startup delay in acquiring immunity, 7(0) = 0 and that immunity tends asymptotically
to a limiting value, say 7. An embodiment of these principles is contained in the simple
differential equation

dr
dt
Let o, exposure, denote half the rate parameter; solving this differential equation gives

= (rate)t(re — 1), r(0) = 0.
r=reo(l —e ).
A plot of r versus ¢ for various o is given in Fig. 4.
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This leads to what we shall term the TDI model,

dz

o = “ha+py+a(h)z,

% = hz—py—re(l—e )y, (4)
N I VRO

Our modification of system (3) has no effect on equilibrium values since r — ry, as t — oc.
The equilibrium, in terms of y, is found to be

:v:p+T°° and 2=T¥°°y.

h y y

But at the same time, solutions must remain on the hyperplane z + y + 2z = 1. Hence the
equilibrium value of y satisfies

y +1+—>=1. 4
( h o )
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Figure 5. The TDI model versus Garki Project data.

In order to show that this model can predict the Garki Project data, thus addressing a
specific query of Aron and May, and for the purpose of obtaining a baseline for further model
development, we perform a weighted non-linear least squares fit. The resulting parameters
are given in Table 1. Note that for these values, v as given by (2) is

v = 0.104.

8



Hence the mean time as a partial immune is 1/y = 10 years approximately. The corresponding
(relative) equilibrium values are also given. The predicted prevalence curve is shown in Fig. 5
and is compared with the Garki Project untreated incidence data.

Table 1 Time Dependent Immunity Model

Parameter Specification

‘ Error ‘ Equilibrium values

h=1.99, p=.074, 1o =

113, 7 =15, 0 =.0024 | .003 |z =.04, § = 46, Z = .50

Predicted Prevalence,
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Figure 6. 7 = 0.6, ro, = 0.08, h and p as shown.

Note that this time dependent immunity model preserves the cross-over phenomenon and
the urban vs rural phenomenon, see Fig. 6. Thus for fixed p = .15, the curve for high A crosses
that for low h, curves A and B. In addition, a high value of p, p = 5.0, gives a profile matching
the urban group of the Wilson data, curve C.

Finally, for the parameter set of Table 1, the sensitivity of the equilibrium to parameter

fluctuation is given by the Jacobian

—.22 .26 A8 —.22
J=1].13 =19 -—-.28 -.27
09 —-.08 .10 48

The rows are ordered z, y and z and the columns h, p, ro and 7. Thus, x is most sensitive
to change in p, y is most sensitive to change in r,, and z is most sensitive to change in 7.



3 Incorporation of Temporary Immunes, Extended Model

Following the idea that there is a period of complete immunity before a partial immune returns
to the susceptible class, we extend the model by introducing another population subgroup,
of size w, the temporary immunes. They differ from the partial immunes in that they are
completely cured but still have strict immunity; their immunity is more complete. This group
serves as a waiting period between cure and susceptibility, see the transition diagram, Fig. 7.

One advantage of this model is that if the rate of return to the susceptible class should
reduce to a small value, that is v — 0, then the entire population accumulates in the z, or
partial immunes, group. But it is known that acquired immunity overcomes parasite load
with time. The advent of a group having true immunity provides a place for the population
in this circumstance.

We assume that the passage from infecteds to partial immunes, and from infecteds to
temporary immunes, determined by parameters r and p respectively, depend on the ability
to develop acquired immunity. Whether an infected individual goes into the partial immunes
or directly to the temporary immunes depends on a number of factors such as the type of
parasite, its density and strain and on human physiology.

Our purpose here is to compare predictions of this model with those of the previous ones,
particularly the TDI model. The existence of temporary immunes may be of importance
to public health officials in that they reduce the load on health services both directly and
indirectly by not transmitting the disease.

The interactions accompanying this new group, as seen in Fig. 7, are: infecteds and partial
immunes can become temporary immunes with rates p and s respectively (cure rates), and
temporary immunes become susceptible at the rate v (true loss of immunity, this could be
equal to 7). Thus we have the following model:

O~
h
p
Figure 7
d
d—:f = —hx+py+v(h)z + vuw,
dy

— = hx—py—ry—py,
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dz
dt
dw
dt
As before, x(t) + y(t) + z(t) + w(t) = 1, £(0) = 1, and = is defined in Eq. (2). System (6)
is a compartmental system with no inflow and hence, as noted above, solutions tend to the

= ry—7(h)z - sz,

= py—+sz—rvw.

singular set of the flow matrix. These can be given in terms of y and, with relative population
size 1, substituted into the total population equation to give

+r+ r + sp+ sr
P TP 04 + TP —1. (7)
h s+ (v + s)v

If we take the sum r + p in the new model to equal the value of r in the old one, then the

outflow from compartment y will be the same between the two models. Similarly by taking v
and v in the new model equal to 7 in the old one, then the inflow to compartment x will be
the same as well. Thus the sum z + w of this model will equal z of the TDI model. Hence the
effect of the new model will be to refine a fraction of the partial immunes of the old model into
temporary immunes. In particular, the dynamics of the infecteds will be unchanged including
their equilibrium value. Thus it is not possible to get information about the internal parameter
s from incidence data. This can only be elicited from information about the relative size of
the temporary immunes.

In Fig. 8 we show the effect of s on the balance between the partial and temporary immunes
at equilibrium. The parameter values here are those of Table 1. When p = 0, no infecteds
become temporary immunes directly but must become partial immunes first. Even in that
case, the temporary immunes come to dominate the ratio between the two even for relatively
small values of s. Under the condition that v = ~, these equilibrium values are given by

r r+p
z= , w= —z].
Y+s y ¥ y

Since maintence of endemic infection is due to the partial immunes and infecteds, and with

most of the immunes in the temporary immunes class, the first line of treatment should be
focused on infectads.

In Fig. 9 we show some prevalence plots of the temporary immunes model for the three
sets of parameter values shown. The corresponding equilibrium values are given in Table 2.

Table 2 Temporary Immunes Model

Parameter Specification | Asymptotic equilibrium values

h=8,p=0.15 r=0.01,y = .45, z= .17, w = .37
h=0.25, p=0.15 x=.47y= .51, 2=0.01, w =0.01
h=10,p=5 r=.11y=.21,2=.13, w=.55
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Figure 8, Balance between partial and temporary immmunes as a function of s

4 Superinfection

If an infected individual is re-exposed before recovery, another brood of parasites may result;
this is referred to as superinfection. Models incorporating superinfection have been previously
introduced and studied, [2, 14, 9]. These authors postulate the possibility that a victim could
sustain very large numbers of broods, even up to 50, see Fig. 10.

Parasites from different broods can be genetically different but we are assuming here they
do not react differently in terms of the model parameters p and r. In the next section we
will take up the possibility of resistant strains. Therefore the effect of subsequent infections
is to increase the parasite load. In this regard, note that with the infection rate parameter
h =1.99, the mean time between infectious bites is 1/h or about one-half year. On the other
hand, with the sum of clearing parameters p + ro = 0.187, the mean duration, or half-life, of
an infection is 5.35 years. Thus one would expect victims to have 5.35/0.5 or nearly 11 broods
on average provided the clearing rate remains unaffected by the increased parasitemia.

Previously we introduced the TDI model in an attempt to capture the extended parasitemia
and group equilbria shown by the Garki Project data, (prevalance exceeding 50% up to age
28, then nearly constant prevalance at the equilibrium level). The cost in terms of modeling
was the addition of a single new parameter, namely 0. Now we ask if superinfection (SI)
can also track this data. It may be possible that each new infection serves to delay acquiring
immunity and thereby extends the symptomatic stage.

Testing these ideas required implementing the model as a simulation rather than as a
differential equation. When the number of infected compartments, n, is even modestly large,
the differential equation solver slows unacceptably. By contrast the time for a simulation
run is independent of n; instead it depends, in a linear fashion, on the simulated population
size. Furthermore, changing n involves no more than specifying its new value. In testing the

12
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Figure 9. 7 =0.6, r +p = 0.08, h and p as shown.

Figure 10, y1, o, - - ., ¥, denote the infected subgroups.

simulation against the differential equation for the TDI model, accurate results were generated
with population sizes as small as 1000. Such runs took 2.3 seconds. Runs with population
size 10,000 took 23 seconds.

Turning now to the question of the dynamics of the SI model, first note that each infected
compartment (except the last) entails three parameters, hy, py and 7, see Fig. 10. These
must bear a close relation to h, p, and r, respectively, of the Aron model. For example setting
hry = h, pr = p and r, = r for all k, introduces no new parameters except the number of
infected subcompartments itself. However this change by itself cannot alter the dynamics of
the combined infected subgroups. Just as in the temporary immunes model above, with these
parameter choices the inflow to z from the combined infecteds and the outflow from x remains
the same and we have, effectively, the Aron model. Hence what the number of subgroups
ought to be and how the infecteds are distribution among them cannot be determined from
the Garki or Wilson data.

Indeed, just as Aron and May predict, were not able to track the Garki data and maintain
the equilibria for any choice of h, p, or . Furthermore, depending on the number of subgroups,
nearly all, infecteds tended to the last subgroup (when hy = h for all k). Thus under the
stated conditions, it is concluded that the SI model is not consistent with malaria incidence
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data.

In regard to the distribution of infecteds among the subgroups, we studied this fixing
parameter values as in the baseline TDI model, see Table 1. In line with the half-life calculation
above, after the 16th subgroup, population falls off to low numbers. The exception to this is
when the number of subgroups is 30 or less, then there is a population blow-up in the last
subgroup, larger as the number of subgroups decreases.

If adding infected subgroups by itself cannot extend parasitemia, it is still possible to make
adjustments to the SI model, along the lines of the TDI model, that captures extended par-
asitemia, reproduces the observed equilibriums and even spreads the infection approximately
equally over the several subgroups. This occurs if the transition from one subgroup to the
next progressively decreases and the recovery time from each subgroup progressively increases.
Both these are justifiable. Extending overall recovery time from later subgroups with more
broods makes sense due to their greater parasite load. (Note this is not the same thing as
saying the time spent in later subgroups is longer, part of the process of acquiring immunity
has already been paid in previous subgroups, see the next.) A decreasing probability of mov-
ing from one subgroup to the next subgroup could be the result of remaining for less time in
later subgroups due to having spent time acquiring immunity in previous subgroups.

Superinfection Model with 20 subgroups, Combined incidence
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Figure 11, SI with 0 = 0.071, a = 0.96, t, = 12.0 and h, 7, r, and p as in TDI model

For progressive delay we utilize the TDI modification but with a half-life normalization
and an increasing delay exponent. Thus, for the kth subgroup put

pr = p(1—e 7" and = re(1 — e TWm"),

14



where t;, denotes the half-life parameter. For infection we introduce an infection rate “atten-
uating” factor a, 0 < a <1,
hy, = a*h.

Note that as t — oo, pr — p and rp — 7 for all k. Hence by taking p and r, as in the TDI
model, this model preserves equilbria since the hj serves only to rearrange infecteds among
the brood distinguishing subgroups. With these modifications, the SI model is no longer in
contrast to TDI, but an extension of it.

Using the TDI baseline parameters for h, p, ro, and 7, and taking o = 0.071, ¢, = 12.0
and a = 0.96 we get the dynamics shown in Fig. 11 with 20 infected subgroups.

5 Resistant Strain Model

Next we consider the effect of distinguishing resistant infecteds; that is, we identify individuals
infected with parasites that are resistant to drugs. Because the dynamics of the mosquito
population operates on a faster time scale than that of the human population, [9], we do not
include the mosquito population in our model.

In this section we assume that all infected individuals receive treatment. Treatment con-
sists in the administration of chloroquine or other 4-aminoquinoline derivatives. It is well
known that these popular drugs do not have any significant activity against the exoerythrocite
or gametocite stage of malaria parasites. We assume that sensitive infecteds respond quickly
to treatment and return to the susceptible class. On the other hand, individuals infected
with a resistant strain do not respond to this treatment and, since mortality is not a factor,
must necessarily acquire immunity and pass through the immune group before returning to
the susceptibles. In this setting, it is still possible that a small number of sensitive infecteds
become partial immunes, and that a small number of resistant infecteds return directly to the
susceptibles. But we ignore these effects so as to be able to examine the relationship between
this model and the previous ones.

_——‘m—\_
~p — T
G — e (—0)
I.-"--.._ (1 — U)h f_'_r,_--"
— L
T uh
Figure 12

Let y represent the infecteds stricken with sensitive parasites only and Y those stricken
with resistant parasites and, possibly, sensitive strains as well. Let u be the probability that,
when an individual is infected, it is with a resistant strain of the parasite, with or without
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sensitive strains, and let 1 — u be the complementary probability, that is the probability that
an individual is infected with sensitive strains only. With the rest of the notations as before,
we have the following sensitive-resistant strain model, see Fig. 12,

W hot oy

o = ~hr+py+z,

d

Y = (1 -wha - py — uhy,

dt

dy , (8)
e uhz + uhy — roo(1 — e 7)Y,

d

d_i = reo(l—e )Y — 7z,

where v is a function of A as in (2), (0) =1 and
z(t) +y(t) + Y () + 2(t) = 1. 9)

The transition from y to Y with per capita rate uh results in superinfection as discussed in

the previous section.

Resistant Infecteds Profile
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Figure 13. Parameter values as in Table 1 except p = 5.

This model is not equivalent of any of the previous ones even though the only new pa-
rameter here is u, the fraction of resistant infections. If u = 0 there results a simple SIS

16



model between susceptibles an infecteds. And if u = 1 there results an SIRS model among
the susceptibles, resistant infecteds and immunes equivalent to that of Aron and May [6].
From this point of view, the STRS model could be seen as describing a situation in which all
infecteds have an initial treatment failure with certain drugs and in which the only means of
recovery is by a slow acquisition of immunity. Furthermore if y = 0, (that is, if immunity is
acquired but not lost) then this model becomes the Muench catalytic model described in the
introduction. Although this model differs from the Aron model, if v = 1 it behaves like the
Aron model for small p.

It is clear that the definition of resistant parasites is with respect to a particular anti-
malaria drug against certain parasites. Thus the parameter v is a function of the effective-
ness of the antimalaria drug against the particular parasite. Since strains resistant to the
4-aminoquinolines have been reported from nearly all parts of the world where malaria is
endemic, it follows that u cannot be zero in all situations where these drugs are the object of
consideration.

The general equilibrium points of the degenerate system (8) are given in terms of z by

_oletun) o _ol-w) v
uh(p + h) u(p+ h) Too
As in the previous models, since solutions must lie on the hyperplane (9), we have a unique
asymptotic equilibrium.

To illustrate the effect of u, in Fig. 13 we plot some prevalence profiles for the resistant
infecteds (the number of sensitive infecteds is very small, see below) for various values of u.
In this figure we assume that all parameters are as in the baseline TDI model, Table 1, except
recovery rate p which taken to be much higher. We see from the figure that the profiles are
relatively insensitive to u (provided it is not zero).

Next we examine graphically some predictions of this model in relation to the previous
ones. With parameter values as in the TDI baseline model, and u = 0.8, see next, we get the
equilibrium point

x =.020,y = .233,Y = .359, z = .387.
Alternatively, using reference [18] it is possible to estimate model parameters specific to

the Nsukka region of Nigeria. These estimates are: h = 0.5, p = 0.8, roc = 0.2, 7 = 0.6, and
u = 0.8 (o is not needed for equilibria). The corresponding equilibrium point is

z =250,y =.021,Y = .541, z = .188.

The population of the region is about 2 million.

Solution curves for both y and Y in Fig. 14 are for the parameter values shown. In the
figure the subscript refers to a particular parameter set, thus yi, 2, and y3 correspond to Y7,
Y5, and Yj respectively. The corresponding equilibria are given in Table 3.
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Figure 14, ro, = 0.08, 7 = 0.6, 0 = .0024, v = 0.8, h and p as shown.

It is seen from the figure that for small p, the resistant curves Y; and Y; resemble the
corresponding curves in Fig. 6. Thus in this setting the first two sets of parameters could be
seen as describing a situation in which infecteds are treated initially with a drug that has very
little impact on the disease. The third curve Yj still shows that if u is large, sensitive infecteds
diminishes. However this curve cannot be related directly to the corresponding Aron/TDI
curve in Fig. 6. This is due to the fact that p is high. Since recovery through treatment by
drugs does not confer immunity in most cases, if the drug treatment is highly effective, then
Y is small and this model is as if u = 0.

Table 3 Sensitive-Resistant model

Parameter Specification | Asymptotic equilibrium values

h=8,p=0.15 rxr=.01,y=0,Y = .45 2= .54
h =0.25, p=0.15 r=.24,y=.03,Y =.69, z=.04
h=10,p=5 r=0,y=0,Y =.24, 2=.76

An observation which follows from the equilbrium equations and illustrated in Table 3, is
that for large p (treatment is widely administered and effective) most of the population will
be in the immune class. This occurs even if infection rate h is large.
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Also noticeable from all the models is that 7 or ¥ more or less controls infection. With
increasing 7 (or v in the extended model), v tends to 0 and the entire population eventually
enters the corresponding immune class regardless of the magnitudes of the other parameters.
This observation leads us to postulate that the most effective control/curative method is that
of boosting the rate of acquiring immunity and minimizing immunity loss.

As previously mentioned, u is a function of the effectiveness of the antimalaria drug against
a particular strain. It is hoped that this work will stimulate interest in the distribution of
antimalaria drugs for all possible strains.
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