Calculating the Hausdorft Distance Between Curves
by

E. Belogay
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332

C. Cabrelli, U. Molter
School of Mathematics
Georgia Institute of Technology
and
Department of Mathematics
Univ. of Buenos Aires

and

R. Shonkwiler
School of Mathematics
Georgia Institute of Technology
e-mail: shonkwiler@math.gatech.edu

1. Introduction
Given two bounded sets A and B in Euclidean space E™, we define dg(A) to be

d15(A) = sup d(a, B) 1)
a€A

where the distance from point a to set B is given by

d(a, B) = 1}2{3 d(a,b). (2)

The point distance d(a,b) may be any distance in E™, such as for example an £,, distance.
We refer to (2) as the minB calculation. In general dg(A) # da(B). Letting Bally(€) denote
the closed ball of radius e centered at point b, the Minkowski e-sausage of B, denoted by
B., is the set

B, = | Bally(e).

beB

So dp(A) is equal to the smallest € such that A is contained in the e-sausage of B.

Sets A and B could be the graphs of curves. Then, in 2-dimensional space, A =
{(z(t),y(t)) : t € [0,1]} for some parameterized curve v : ¢t € [0,1] — (x(t), y(¢)). Similarly
for B.

The Hausdorff distance between A and B will be taken as

h(A, B) = dg(A) + da(B).

This distance between 2-dimensional sets is important in image processing in which the sets
are pixelized objects residing in a grid of M x N pixels or cells. Two objects A and B in a
black and white image are identical iff the Hausdorff distance between them is 0. Further,
if one object is the translate of the other by a distance ¢, B = A + t, then h(A, B) = 2t.
Letting |A| denote the number of pixels, or cardinality, of A, a straightforward computa-
tional implementation of (1) calculates dg(A), and hence h(A, B) also, in O(|A||B]) time.
We refer to this as the Direct algorithm. However, it is possible to calculate h(A, B) for
discretized binary sets in time proportional to the frame size, M N, in two dimensions (see
(Shonkwiler, 1990) for the case of /1 point distances and (Shonkwiler, 1991) for the general
¢, case). We refer to these (collectively) as the Field algorithm, since the main idea is to
step from one cell to the next over the pixel grid.

Now suppose sets A and B are (discretized) curves. Their Hausdorff distance may be
computed by the above mentioned algorithms, but neither is efficient. In particular the
Field algorithm is inefficient since a curve is generally a sparse subset of the complete pixel
grid. In fact, if both A and B have Hausdorff dimension 1, then O(|A||B|) = O(M N). But
for such 1-dimensional curves, one would think that an algorithm linear in their arc-lengths
|A| + | B| should be possible.

In this paper, we give a new algorithm for calculating (1) with an average complexity
of

log(max(M, N))(|4| + |B|) (3)

when an /£, point metric with p # 1 and p # oo is used. (There are special configurations
of the sets for which (3) is violated when the point metric is £; or £,.) We refer to it as the
Scaling algorithm, for its main idea is to refine an approximation of the distance h(A, B)
by rescaling the resolution and doing the direct calculation for only a small subset of pairs
a € A and b € B, which we call bridges. Unlike the Field algorithm, whose running time is
independent of A and B, the Scaling algorithm’s running time varies with the number of
points in the sets, as estimate (3) dictates. For curves, or more generally, sparse subsets,
and certain other subsets with widely separated points, the Scaling algorithm is faster. The
algorithm works, with only minor changes, for the various £, point metrics. The Scaling
algorithm may be adapted to any space dimension; its advantage for sparse sets increases
with dimension. Finally, besides calculating the distance (1), the algorithm also produces
the points on the curves at which this distance is achieved.

In the next section, we present the Scaling algorithm in detail for two dimensions, but
here we outline the main ideas. For the purposes of computation, we assume the discretized
curves A and B live in an N x N square of cells, where N is a power of 2, N = 2. This
may entail embedding the given frame in a larger one. The algorithm proceeds in stages
r =20,1,..., R and begins with the entire space containing A and B as one large block.
Processing at a given stage consists of these steps:

1 curve rescaling;

2 bridge updating;

3 minB (local) pruning, i.e. rescaling the d(a, B) candidates;
4 maxd (global) pruning, i.e. rescaling the dg(A) candidates.

Beginning with the crudest resolution possible, a single 1 x 1 block, processing works
in stages toward the highest resolution. In this way, many portions of both curves are iden-
tified early on as non-contenders in figuring into the calculation of dg(A). The remaining
contenders are kept for further processing, the bridges, consisting of candidate pairs of
blocks, or bridgeheads, from the representatives of A and B at the given resolution. To
carry out the updating, the blocks serving as bridgeheads are refined according to their
respective curves; this is step 1. Next, step 2: from the refined bridgeheads, all possibil-
ities for new bridges are considered, but many of them can be eliminated as contenders.
In step 3, the list is pruned by invoking equation (2) for each A bridgehead; this is a local
comparison. In step 4, a global pruning is carried out based on equation (1), and every
bridge length is compared with the current maximum.

Following the detailed explanation of these steps, we give some intermediate results
of the algorithm and the number of bridges at each stage, in a typical application.

2. Algorithm for 2D sets

In the following discussion, we show how to calculate dg(A). The calculation of d4(B)
is similar. To simplify the distance calculations, we use the /; point metric but not in
any essential way; any £, may be substituted. As noted above, if A and B are properly
engineered, the work will be excessive but the algorithm functions nonetheless. We assume

that curve A is discretized and given as a sequence ay, as, ..., a|4|, of ordered pairs a; =

(.777(:“), yga)), i=1,...,|A|, identifying cells of a uniform spaced 2% x 2% grid. The number

|A| of points we take as the arc-length of A. Curve B is likewise given. For the purpose
of calculating the distance between curves, the order of their pixels is irrelevant, so they
may be regarded as sets if desired. Unlike sets, a curve may cross itself and accordingly,
some cells may be repeated in the sequence. But subsequent processing of the algorithm
removes these duplications.

As stated above, the algorithm proceeds in stages r = 0,1,...,R. Stage r = 0
consists of the entire space as a single 1 x 1 block whose coordinates are (0, 0)q and a single
bridge whose A bridgehead is (0,0)y and whose B bridgehead is the same. Processing now
proceeds to the next stage.

Curve rescaling

Each stage begins with a rescaling in which the block size is halved in each direction thereby
increasing the number of blocks by a factor of 4 but decreasing the number of pixels per
block by a factor of 1/4. Discretized versions A, and B, of A and B are calculated at the
new resolution. A block at stage r is a point a, of A, iff some cell of the block contains a
point of A.

The rescaling entails a doubling of coordinates, adding one more binary digit of pre-
cision. More exactly, the block whose coordinates were (z,y), becomes 4 smaller blocks
whose various quadrants become: SouthWest (2, 2y),1, SouthEast (2z+1, 2y), 1, North-
West (2x,2y + 1),41, and NorthEast (2z + 1,2y + 1),41.

Although this calculation may proceed conceptually at the start of each new stage, it
is more convenient to do the calculations of the A, and B,., r = 0,..., R, in their entirety
beforehand. The calculation is organized as, and the intermediate sets kept, in a quadtree.
The root of the A-quadtree contains the data (0,0)q, the initial block, and four pointers
labeled SW, SE, NW, and NE. In general, a node at stage r corresponding to an occupied
block has non-null quadrant pointers only for those sub-quadrants that are themselves
occupied at stage r + 1. Clearly, at least one such sub-quadrant will be occupied (except
at stage R). The time for the calculation of both A and B quadtrees is easily seen to be
O(log(N)(]A|+|B])). The quadtree representation will also prove useful for the temporary
storage of minB values corresponding to each a,..

Bridge updating

With A, and B, in hand, the next step at stage r is the updating of the previous bridges
in such a way as to keep those that will potentially give the distance dp(A).

The original bridge, at stage » = 0, is A : (0,0)g to B : (0,0)9. Bridges are im-
plemented as a doubly linked list. In addition to the bridgeheads, each node of this list
also holds references to the A and B quadtrees corresponding to these bridgeheads; this
facilitates bridge updating. From the reference to the A quadtree, each of the occupied
sub-quadrants of the A bridgehead will potentially be an A bridgehead at the next stage.
The same holds for the subsequent B-bridgeheads. Initially a new bridge is created for
every such pairs so up to 16 are possible; we refer to this as bridge splitting. But eventually
it may turn out that a bridge no longer has the potential for giving dg(A) and can safely
be deleted from the list. This is the purpose of the minB and maxd pruning steps.

MinB pruning

Proposition. Let s = dy(a,,b,) be the {1 distance between the blocks a, and b, at
resolution r. Suppose both a, and b, are themselves decomposed into n? blocks according
to an n X n regular rectangular subdivision, n > 1. Then the minimal distance between a
sub-block of a,. and a sub-block of b, is (s —2)n+2 and the maximal distance is (s+2)n— 2.
That is, for all a € a, and b € b,.,

(s —2)n+2<di(a,b) < (s+2)n — 2.

Proof. We may assume without loss of generality that a, is the block (0,0), and b, is the
block (x,y),, z,y > 0, at resolution r. Since dy(a,,b.) = s, then z + y = s. Now for the
minimal distance between sub-blocks a € a, and b € b,., evidently a should be located in
the NorthEast corner of a,, that is a = (n — 1,n — 1). By the same token, b should be
located along the Westerly or Southerly edges of b,.. Thus b = (ns,n — 1) if x = s and
y=0orb=(n(s—1),n)ifz =s—1and y =1 and so on. The minimum of such distances
is
di((n—1,n—1),(n(s—1),n)) =n(s—2)+2.

The upper bound is obtained In a like manner.

Corollary. For any resolution r, all bridges having the same A bridgehead, and whose
¢y lengths exceed the local minimum by more than 3 will not figure in the calculation of
dp(A).

Proof. Let dy(a,,b}) = s and dy(a,,b?) = s+4, at resolution 7. Then at the final resolution,
an n x n refinement say, we will have, for the final point or points b! and b2,

di(a,b®) > (s+4—-2)n+2> (s+2)n—2>dy(a,b")

for any possible final point a. Hence the a, to b2 bridge will not be a d(a, B) candidate.

To obtain the minimum B distance for a given A, block, the temporary value can
be maintained in the A-quadtree whose pointer is already available in the bridge node.
While minB pruning is carried out, the stage r value of dg(A) can be calculated. This is
computed by equation (1) and is the value that would be reported if r were the last stage.
We refer to this value as maxd.

Mazxd pruning

In addition to minB pruning, a bridge at stage r may have a length sufficiently smaller
than the current maximum distance, maxd,, that it too can be eliminated from further
consideration. A bridge is eliminated in this step if its length is less than maxd, — 3.

Proposition. Let d = |a, — b,| be the ¢, length of the bridge (a,,b,) at stage r. Then
the length d’' of every bridge that may be formed at stage r + 1 from the subquadrants of
a, and b, satisfies

2d —2<d <2d+2.

Proof. Assume without loss of generality that a, = (0,0) and b, = (z,y),, ,y > 0. Then
d = |[(z,y)r|l,- With the above notation, it is easy to see that the shortest bridge at step
r 4+ 1 is the one joining the points (1,1) and (2, 2y), and its length is

l(22,29) — (1L 1)) = 2l)] — (01, 1) > 2d - 2,

since ||(1,1)]], < 2.
On the other hand the longest bridge is the one joining (0,0) with (22 + 1,2y + 1); its
length is
120+ 1,2 + 1) < 2@)l + (L Dl < 2+ 2,

which yields the desired result.

Corollary. If d(a,,B,) < maxd, — 4 for a, € A,, then no bridge derived from a, will
figure in the calculation of dg(A).

Proof. Consider a bridge whose length d is at most maxd,. —4. In the worst case, the bridge
corresponding to maxd, rescales minimally, to 2maxd, — 2, while the one corresponding
to d rescales maximally, to 2d + 2 < 2(maxd, — 4) + 2 = 2maxd, — 6. Thus, at the next
stage their separation is still 4 or more.

Complexity

As already seen, the quadtree calculation requires O (log(N)(]A|+ |B])) time. The minimal
execution time occurs when both A and B are singletons with points in opposite corners of
the frame. Then, only O(1) time need be expended at each stage for the other processing
steps. We now turn to the configuration of A and B for maximal execution time.
Processing at every stage is proportional to the number of bridges, and we show that
the number of bridges is at most 2(|A|+ |B|). In order to do this, we analyze the problem
from a graph-theoretical viewpoint: Let GG be the bipartite graph with vertex set V= AUB
and edge set £ = {(a,b) :a € A,b € B, and (a,b) is a bridge }. Assume, without loss of
generality, that (a,b) is a bridge iff d(a,b) = d(a, B) or d(a,b) = d(b, A) which we take to
be 1. We therefore want to show that the number of edges (bridges) is at most 2 times the
number of vertices. We first need the following definitions, cf. (Jackson and Thoro, 1990).

Definitions. A region associated with a planar graph G is a connected component of the
complement E?\G. The degree of such a region is the number of edges on its boundary.

If both sides of an edge are on the boundary of the same region, the edge should be
counted twice, e.g. if V = {a,b} and E = {(a,b)}, then deg(E*\F) = 2.
Theorem 1. |E| < 2|V|— 3 for ¥, distance in E%, where 1 < p < oo.

The proof consists of several lemmas. First we show that no two edges intersect, so GG
is planar. Then we observe that each region has an even number of edges. Finally we use

the Euler’s formula to achieve the inequality |F| < 2|V| — 3 for each connected component
of G and add the results. The theorem doesn’t hold for ¢; and /., distance in E?2.

6

Lemma 1. No two edges of the graph G intersect.

Proof. Suppose that the edges between a; and b; and between as and b intersect in the
(non-vertex) point ¢, where a; € A, b; € B, i = 1,2. Then d(ay,c) + d(c,by) = 1 =
d(asz, c)+d(c,bs). Adding up the two equalities and combining the result with the triangle
inequalities for the triangles {a1, ¢, ba} and {as, ¢, b1}, we obtain

d(al, bg) + d(ag, bl) S (d(al, C) + d(C, bg)) + (d(az, C) + d(C, bl)) =141=2.

Since d(a;,b;) > 1 for all 4,7, it must be that d(ai,b2) = d(az,b1) = 1, thus forcing
equalities in the triangle inequalities and hence the co-linearity of a1, as, b1, b2 and c¢. The
latter and the fact that d(a;,b;) =1 for 4, j = 1,2 implies that a3 = ag or by = be, which
is a contradiction.

Remark 1. Since for any {, metric in E*, 1 < p < oo, the triangle equality implies
co-linearity, the lemma is true for all those metrics. Note again that this fails for p =1 or
p = 00.

Remark 2. The lemma still holds if we replace E? with a finite grid. (In this case the
point ¢ is also on the grid.)

Corollary. The graph GG is planar.

Consider the connected components of a graph GG. Since the sizes of their edge sets add up

to the size of the edge set of G, and the same holds true for the vertex sets, it is enough to

prove the inequality above for each connected component of G and add up the resulting

inequalities. Therefore, without loss of generality we assume from now on that G is a

connected component of the graph in the conjecture. Moreover, we can assume that GG has

at least 2 edges, for if G contains one or no edges the inequality is trivially satisfied.
Thus, G is now a connected planar graph with at least two edges.

Lemma 2. The degree of each region in G is at least 4.

Proof. Since G is bipartite, the vertices on the boundary of any region alternate between
A and B. Therefore, the number of edges is even and bigger than 2.

Lemma 3. For a connected bipartite graph with at least 2 edges |E| < 2|V| — 4.

Proof. Denote the number of regions by |R| and sum the degrees of all regions. Since
each region has degree at least 4 and each edge is counted twice, we obtain that 2|E| =
sum of the degrees of all regions > 4|R|, i.e. |R| < |E|/2. Now plug that inequality into
Euler’s formula to obtain

2=V|- |E|+[R <|V|-|E|+|E|/2=|V]-[E|/2,

i.e. |[E| <2|V|—4. This proves the theorem.

Remark. The estimate in the theorem is sharp. It can be achieved exactly and asymp-
totically. The example is the “chessboard” grid V = {(xz,y) € Z*? : 1 < x,y < n},
A ={(z,y) € V:x+yiseven}, B = V\A, and the edges connect each point with its
four (North, South, East, West) neighbors. This bipartite graph has |V| = n? vertices and
|E| = 2n(n—1) edges. In the limit (n — oc) we have |E|/|V| — 2, maintaining |F| < 2|V|.
The trivial example of two vertices joined by an edge satisfies |E| = 2|V | — 3.

Counterezample for 4.

Consider A and B to be the points on two parallel line segments at a 45 degree angle to
the z-axis, e.g. A={(z,y):2+y=0,-2<z <2}, B={(z,y):z+y=2,—1<z <3}
The ¢, distance between A and B is exactly 2. Now consider the points in the middle two
quarters of each segment: A" = {(z,y) e A: -1 <z <1}, B ={(z,y) € B: 0 <z < 2}.
Assume that at a given resolution each of these sets contains n points (about 2-"). Notice
that for each point a € A’, exactly n points of B are distance 2 from it. Therefore, there
are at least n? bridges of length 2 and a total of 4n points in A U B. Thus, the inequality
in the conjecture is violated for n > 8.

Note: A similar argument (take two line segments parallel to the z-axis) shows that
the conjecture fails in the /., case. What distinguishes these two cases from the rest is
that the “unit circle” in these metrics is not strictly convex and has flat regions.

An Example

The following table pertains to the calculation of the Hausdorff distance between a circle
and a cosine curve at resolution 256 x 256. There are 8 stages, covering resolutions 1 x 1
to full resolution. The number of A and B points at each stage is given, followed by the
number of bridges and the fractions of points that are bridgeheads.

Table 1 per stage point and bridge data for Cosine to Circle calculation
stage: 1 2 3 4 5) 6 7 8
A pts 4 9 21 45 92 180 344 603
B pts 4 12 28 60 124 234 440 762
bridges 12 39 93 193 302 380 427 82
frac A .89 .68 .45 .30 .19 A1 .06 015
frac B .85 .52 .34 23 14 .08 .05 012

References

[1] Jackson and Thoro. Applied Combinatorics with Problem Solving. Addison—Wesley
(1991), 159-163.
[2] Shonkwiler, R. An image algorithm for computing the hausdorff distance efficiently
in linear time, Inf. Proc. Letters 30 (1989), 87-89.
[3] Shonkwiler, R. Computing the Hausdorff set distance in linear time for any L(p) point
distance. Info. Proc. Letters 38 (1991) 201-207.

