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1. Introdu
tionGiven two bounded sets A and B in Eu
lidean spa
e Em, we de�ne dB(A) to bedB(A) = supa2A d(a;B) (1)where the distan
e from point a to set B is given byd(a;B) = infb2B d(a; b): (2)The point distan
e d(a; b) may be any distan
e in Em, su
h as for example an `p distan
e.We refer to (2) as theminB 
al
ulation. In general dB(A) 6= dA(B). Letting Ballb(�) denotethe 
losed ball of radius � 
entered at point b, the Minkowski �-sausage of B, denoted byB�, is the set B� = [b2BBallb(�):So dB(A) is equal to the smallest � su
h that A is 
ontained in the �-sausage of B.Sets A and B 
ould be the graphs of 
urves. Then, in 2-dimensional spa
e, A =f(x(t); y(t)) : t 2 [0; 1℄g for some parameterized 
urve 
 : t 2 [0; 1℄! (x(t); y(t)). Similarlyfor B.The Hausdor� distan
e between A and B will be taken ash(A;B) = dB(A) + dA(B):This distan
e between 2-dimensional sets is important in image pro
essing in whi
h the setsare pixelized obje
ts residing in a grid of M �N pixels or 
ells. Two obje
ts A and B in abla
k and white image are identi
al i� the Hausdor� distan
e between them is 0. Further,if one obje
t is the translate of the other by a distan
e t, B = A + t, then h(A;B) = 2t.Letting jAj denote the number of pixels, or 
ardinality, of A, a straightforward 
omputa-tional implementation of (1) 
al
ulates dB(A), and hen
e h(A;B) also, in O(jAjjBj) time.We refer to this as the Dire
t algorithm. However, it is possible to 
al
ulate h(A;B) fordis
retized binary sets in time proportional to the frame size, MN , in two dimensions (see(Shonkwiler, 1990) for the 
ase of `1 point distan
es and (Shonkwiler, 1991) for the general`p 
ase). We refer to these (
olle
tively) as the Field algorithm, sin
e the main idea is tostep from one 
ell to the next over the pixel grid.Now suppose sets A and B are (dis
retized) 
urves. Their Hausdor� distan
e may be
omputed by the above mentioned algorithms, but neither is eÆ
ient. In parti
ular theField algorithm is ineÆ
ient sin
e a 
urve is generally a sparse subset of the 
omplete pixelgrid. In fa
t, if both A and B have Hausdor� dimension 1, then O(jAjjBj) = O(MN). Butfor su
h 1-dimensional 
urves, one would think that an algorithm linear in their ar
-lengthsjAj+ jBj should be possible.In this paper, we give a new algorithm for 
al
ulating (1) with an average 
omplexityof log(max(M;N))(jAj+ jBj) (3)2



when an `p point metri
 with p 6= 1 and p 6=1 is used. (There are spe
ial 
on�gurationsof the sets for whi
h (3) is violated when the point metri
 is `1 or `1.) We refer to it as theS
aling algorithm, for its main idea is to re�ne an approximation of the distan
e h(A;B)by res
aling the resolution and doing the dire
t 
al
ulation for only a small subset of pairsa 2 A and b 2 B, whi
h we 
all bridges. Unlike the Field algorithm, whose running time isindependent of A and B, the S
aling algorithm's running time varies with the number ofpoints in the sets, as estimate (3) di
tates. For 
urves, or more generally, sparse subsets,and 
ertain other subsets with widely separated points, the S
aling algorithm is faster. Thealgorithm works, with only minor 
hanges, for the various `p point metri
s. The S
alingalgorithm may be adapted to any spa
e dimension; its advantage for sparse sets in
reaseswith dimension. Finally, besides 
al
ulating the distan
e (1), the algorithm also produ
esthe points on the 
urves at whi
h this distan
e is a
hieved.In the next se
tion, we present the S
aling algorithm in detail for two dimensions, buthere we outline the main ideas. For the purposes of 
omputation, we assume the dis
retized
urves A and B live in an N �N square of 
ells, where N is a power of 2, N = 2R. Thismay entail embedding the given frame in a larger one. The algorithm pro
eeds in stagesr = 0; 1; : : : ; R and begins with the entire spa
e 
ontaining A and B as one large blo
k.Pro
essing at a given stage 
onsists of these steps:1 
urve res
aling;2 bridge updating;3 minB (lo
al) pruning, i.e. res
aling the d(a;B) 
andidates;4 maxd (global) pruning, i.e. res
aling the dB(A) 
andidates.Beginning with the 
rudest resolution possible, a single 1� 1 blo
k, pro
essing worksin stages toward the highest resolution. In this way, many portions of both 
urves are iden-ti�ed early on as non-
ontenders in �guring into the 
al
ulation of dB(A). The remaining
ontenders are kept for further pro
essing, the bridges, 
onsisting of 
andidate pairs ofblo
ks, or bridgeheads, from the representatives of A and B at the given resolution. To
arry out the updating, the blo
ks serving as bridgeheads are re�ned a

ording to theirrespe
tive 
urves; this is step 1. Next, step 2: from the re�ned bridgeheads, all possibil-ities for new bridges are 
onsidered, but many of them 
an be eliminated as 
ontenders.In step 3, the list is pruned by invoking equation (2) for ea
h A bridgehead; this is a lo
al
omparison. In step 4, a global pruning is 
arried out based on equation (1), and everybridge length is 
ompared with the 
urrent maximum.Following the detailed explanation of these steps, we give some intermediate resultsof the algorithm and the number of bridges at ea
h stage, in a typi
al appli
ation.2. Algorithm for 2D setsIn the following dis
ussion, we show how to 
al
ulate dB(A). The 
al
ulation of dA(B)is similar. To simplify the distan
e 
al
ulations, we use the `1 point metri
 but not inany essential way; any `p may be substituted. As noted above, if A and B are properlyengineered, the work will be ex
essive but the algorithm fun
tions nonetheless. We assumethat 
urve A is dis
retized and given as a sequen
e �1; �2; : : : ; �jAj, of ordered pairs �i =(x(a)i ; y(a)i ), i = 1; : : : ; jAj, identifying 
ells of a uniform spa
ed 2R � 2R grid. The number3



jAj of points we take as the ar
-length of A. Curve B is likewise given. For the purposeof 
al
ulating the distan
e between 
urves, the order of their pixels is irrelevant, so theymay be regarded as sets if desired. Unlike sets, a 
urve may 
ross itself and a

ordingly,some 
ells may be repeated in the sequen
e. But subsequent pro
essing of the algorithmremoves these dupli
ations.As stated above, the algorithm pro
eeds in stages r = 0; 1; : : : ; R. Stage r = 0
onsists of the entire spa
e as a single 1�1 blo
k whose 
oordinates are (0; 0)0 and a singlebridge whose A bridgehead is (0; 0)0 and whose B bridgehead is the same. Pro
essing nowpro
eeds to the next stage.Curve res
alingEa
h stage begins with a res
aling in whi
h the blo
k size is halved in ea
h dire
tion therebyin
reasing the number of blo
ks by a fa
tor of 4 but de
reasing the number of pixels perblo
k by a fa
tor of 1/4. Dis
retized versions Ar and Br of A and B are 
al
ulated at thenew resolution. A blo
k at stage r is a point ar of Ar i� some 
ell of the blo
k 
ontains apoint of A.The res
aling entails a doubling of 
oordinates, adding one more binary digit of pre-
ision. More exa
tly, the blo
k whose 
oordinates were (x; y)r be
omes 4 smaller blo
kswhose various quadrants be
ome: SouthWest (2x; 2y)r+1, SouthEast (2x+1; 2y)r+1, North-West (2x; 2y + 1)r+1, and NorthEast (2x+ 1; 2y + 1)r+1.Although this 
al
ulation may pro
eed 
on
eptually at the start of ea
h new stage, itis more 
onvenient to do the 
al
ulations of the Ar and Br, r = 0; : : : ; R, in their entiretybeforehand. The 
al
ulation is organized as, and the intermediate sets kept, in a quadtree.The root of the A-quadtree 
ontains the data (0; 0)0, the initial blo
k, and four pointerslabeled SW, SE, NW, and NE. In general, a node at stage r 
orresponding to an o

upiedblo
k has non-null quadrant pointers only for those sub-quadrants that are themselveso

upied at stage r + 1. Clearly, at least one su
h sub-quadrant will be o

upied (ex
eptat stage R). The time for the 
al
ulation of both A and B quadtrees is easily seen to beO(log(N)(jAj+ jBj)). The quadtree representation will also prove useful for the temporarystorage of minB values 
orresponding to ea
h ar.Bridge updatingWith Ar and Br in hand, the next step at stage r is the updating of the previous bridgesin su
h a way as to keep those that will potentially give the distan
e dB(A).The original bridge, at stage r = 0, is A : (0; 0)0 to B : (0; 0)0. Bridges are im-plemented as a doubly linked list. In addition to the bridgeheads, ea
h node of this listalso holds referen
es to the A and B quadtrees 
orresponding to these bridgeheads; thisfa
ilitates bridge updating. From the referen
e to the A quadtree, ea
h of the o

upiedsub-quadrants of the A bridgehead will potentially be an A bridgehead at the next stage.The same holds for the subsequent B-bridgeheads. Initially a new bridge is 
reated forevery su
h pairs so up to 16 are possible; we refer to this as bridge splitting. But eventuallyit may turn out that a bridge no longer has the potential for giving dB(A) and 
an safelybe deleted from the list. This is the purpose of the minB and maxd pruning steps.MinB pruning 4



Proposition. Let s = d1(ar; br) be the `1 distan
e between the blo
ks ar and br atresolution r. Suppose both ar and br are themselves de
omposed into n2 blo
ks a

ordingto an n� n regular re
tangular subdivision, n � 1. Then the minimal distan
e between asub-blo
k of ar and a sub-blo
k of br is (s�2)n+2 and the maximal distan
e is (s+2)n�2.That is, for all a 2 ar and b 2 br,(s� 2)n+ 2 � d1(a; b) � (s+ 2)n� 2:Proof. We may assume without loss of generality that ar is the blo
k (0; 0)r and br is theblo
k (x; y)r, x; y � 0, at resolution r. Sin
e d1(ar; br) = s, then x + y = s. Now for theminimal distan
e between sub-blo
ks a 2 ar and b 2 br, evidently a should be lo
ated inthe NorthEast 
orner of ar, that is a = (n � 1; n � 1). By the same token, b should belo
ated along the Westerly or Southerly edges of br. Thus b = (ns; n � 1) if x = s andy = 0 or b = (n(s�1); n) if x = s�1 and y = 1 and so on. The minimum of su
h distan
esis d1�(n� 1; n� 1); (n(s� 1); n)� = n(s� 2) + 2:The upper bound is obtained In a like manner.Corollary. For any resolution r, all bridges having the same A bridgehead, and whose`1 lengths ex
eed the lo
al minimum by more than 3 will not �gure in the 
al
ulation ofdB(A).Proof. Let d1(ar; b1r) = s and d1(ar; b2r) = s+4, at resolution r. Then at the �nal resolution,an n� n re�nement say, we will have, for the �nal point or points b1 and b2,d1(a; b2) � (s+ 4� 2)n+ 2 > (s+ 2)n� 2 � d1(a; b1)for any possible �nal point a. Hen
e the ar to b2r bridge will not be a d(a;B) 
andidate.To obtain the minimum B distan
e for a given Ar blo
k, the temporary value 
anbe maintained in the A-quadtree whose pointer is already available in the bridge node.While minB pruning is 
arried out, the stage r value of dB(A) 
an be 
al
ulated. This is
omputed by equation (1) and is the value that would be reported if r were the last stage.We refer to this value as maxd.Maxd pruningIn addition to minB pruning, a bridge at stage r may have a length suÆ
iently smallerthan the 
urrent maximum distan
e, maxdr, that it too 
an be eliminated from further
onsideration. A bridge is eliminated in this step if its length is less than maxdr � 3.
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Proposition. Let d = jar � brj be the `p length of the bridge (ar; br) at stage r. Thenthe length d0 of every bridge that may be formed at stage r + 1 from the subquadrants ofar and br satis�es 2d� 2 � d0 � 2d+ 2:Proof. Assume without loss of generality that ar = (0; 0) and br = (x; y)r, x; y > 0. Thend = k(x; y)rkp. With the above notation, it is easy to see that the shortest bridge at stepr + 1 is the one joining the points (1; 1) and (2x; 2y), and its length isk(2x; 2y)� (1; 1)k � 2k(x; y)kp � k(1; 1)kp � 2d� 2;sin
e k(1; 1)kp � 2.On the other hand the longest bridge is the one joining (0; 0) with (2x+1; 2y+1); itslength is k(2x+ 1; 2y + 1)k � 2k(x; y)kp + k(1; 1)kp � 2d+ 2;whi
h yields the desired result.Corollary. If d(ar; Br) � maxdr � 4 for ar 2 Ar, then no bridge derived from ar will�gure in the 
al
ulation of dB(A).Proof. Consider a bridge whose length d is at most maxdr�4. In the worst 
ase, the bridge
orresponding to maxdr res
ales minimally, to 2maxdr � 2, while the one 
orrespondingto d res
ales maximally, to 2d + 2 � 2(maxdr � 4) + 2 = 2maxdr � 6. Thus, at the nextstage their separation is still 4 or more.ComplexityAs already seen, the quadtree 
al
ulation requires O(log(N)(jAj+ jBj)) time. The minimalexe
ution time o

urs when both A and B are singletons with points in opposite 
orners ofthe frame. Then, only O(1) time need be expended at ea
h stage for the other pro
essingsteps. We now turn to the 
on�guration of A and B for maximal exe
ution time.Pro
essing at every stage is proportional to the number of bridges, and we show thatthe number of bridges is at most 2(jAj+ jBj). In order to do this, we analyze the problemfrom a graph-theoreti
al viewpoint: Let G be the bipartite graph with vertex set V = A[Band edge set E = f(a; b) : a 2 A; b 2 B; and (a; b) is a bridge g. Assume, without loss ofgenerality, that (a; b) is a bridge i� d(a; b) = d(a;B) or d(a; b) = d(b; A) whi
h we take tobe 1. We therefore want to show that the number of edges (bridges) is at most 2 times thenumber of verti
es. We �rst need the following de�nitions, 
f. (Ja
kson and Thoro, 1990).De�nitions. A region asso
iated with a planar graph G is a 
onne
ted 
omponent of the
omplement E2nG. The degree of su
h a region is the number of edges on its boundary.If both sides of an edge are on the boundary of the same region, the edge should be
ounted twi
e, e.g. if V = fa; bg and E = f(a; b)g, then deg(E2nE) = 2.Theorem 1. jEj � 2jV j � 3 for `p distan
e in E2, where 1 < p <1.The proof 
onsists of several lemmas. First we show that no two edges interse
t, so Gis planar. Then we observe that ea
h region has an even number of edges. Finally we usethe Euler's formula to a
hieve the inequality jEj � 2jV j � 3 for ea
h 
onne
ted 
omponentof G and add the results. The theorem doesn't hold for `1 and `1 distan
e in E2.6



Lemma 1. No two edges of the graph G interse
t.Proof. Suppose that the edges between a1 and b1 and between a2 and b2 interse
t in the(non-vertex) point 
, where ai 2 A, bi 2 B, i = 1; 2. Then d(a1; 
) + d(
; b1) = 1 =d(a2; 
)+d(
; b2). Adding up the two equalities and 
ombining the result with the triangleinequalities for the triangles fa1; 
; b2g and fa2; 
; b1g, we obtaind(a1; b2) + d(a2; b1) � (d(a1; 
) + d(
; b2)) + (d(a2; 
) + d(
; b1)) = 1 + 1 = 2:Sin
e d(ai; bj) � 1 for all i; j, it must be that d(a1; b2) = d(a2; b1) = 1, thus for
ingequalities in the triangle inequalities and hen
e the 
o-linearity of a1, a2, b1, b2 and 
. Thelatter and the fa
t that d(ai; bj) = 1 for i; j = 1; 2 implies that a1 = a2 or b1 = b2, whi
his a 
ontradi
tion.Remark 1. Sin
e for any `p metri
 in E2, 1 < p < 1, the triangle equality implies
o-linearity, the lemma is true for all those metri
s. Note again that this fails for p = 1 orp =1.Remark 2. The lemma still holds if we repla
e E2 with a �nite grid. (In this 
ase thepoint 
 is also on the grid.)Corollary. The graph G is planar.Consider the 
onne
ted 
omponents of a graph G. Sin
e the sizes of their edge sets add upto the size of the edge set of G, and the same holds true for the vertex sets, it is enough toprove the inequality above for ea
h 
onne
ted 
omponent of G and add up the resultinginequalities. Therefore, without loss of generality we assume from now on that G is a
onne
ted 
omponent of the graph in the 
onje
ture. Moreover, we 
an assume that G hasat least 2 edges, for if G 
ontains one or no edges the inequality is trivially satis�ed.Thus, G is now a 
onne
ted planar graph with at least two edges.Lemma 2. The degree of ea
h region in G is at least 4.Proof. Sin
e G is bipartite, the verti
es on the boundary of any region alternate betweenA and B. Therefore, the number of edges is even and bigger than 2.Lemma 3. For a 
onne
ted bipartite graph with at least 2 edges jEj � 2jV j � 4.Proof. Denote the number of regions by jRj and sum the degrees of all regions. Sin
eea
h region has degree at least 4 and ea
h edge is 
ounted twi
e, we obtain that 2jEj =sum of the degrees of all regions � 4jRj, i.e. jRj � jEj=2. Now plug that inequality intoEuler's formula to obtain2 = jV j � jEj+ jRj � jV j � jEj+ jEj=2 = jV j � jEj=2;i.e. jEj � 2jV j � 4. This proves the theorem.
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Remark. The estimate in the theorem is sharp. It 
an be a
hieved exa
tly and asymp-toti
ally. The example is the \
hessboard" grid V = f(x; y) 2 Z2 : 1 � x; y � ng,A = f(x; y) 2 V : x + y is eveng, B = V nA, and the edges 
onne
t ea
h point with itsfour (North, South, East, West) neighbors. This bipartite graph has jV j = n2 verti
es andjEj = 2n(n�1) edges. In the limit (n!1) we have jEj=jV j ! 2, maintaining jEj < 2jV j.The trivial example of two verti
es joined by an edge satis�es jEj = 2jV j � 3.Counterexample for `1.Consider A and B to be the points on two parallel line segments at a 45 degree angle tothe x-axis, e.g. A = f(x; y) : x+ y = 0;�2 < x < 2g, B = f(x; y) : x+ y = 2;�1 < x < 3g.The `1 distan
e between A and B is exa
tly 2. Now 
onsider the points in the middle twoquarters of ea
h segment: A0 = f(x; y) 2 A : �1 < x < 1g, B0 = f(x; y) 2 B : 0 < x < 2g.Assume that at a given resolution ea
h of these sets 
ontains n points (about 2�r). Noti
ethat for ea
h point a 2 A0, exa
tly n points of B are distan
e 2 from it. Therefore, thereare at least n2 bridges of length 2 and a total of 4n points in A [B. Thus, the inequalityin the 
onje
ture is violated for n > 8.Note: A similar argument (take two line segments parallel to the x-axis) shows thatthe 
onje
ture fails in the `1 
ase. What distinguishes these two 
ases from the rest isthat the \unit 
ir
le" in these metri
s is not stri
tly 
onvex and has 
at regions.An ExampleThe following table pertains to the 
al
ulation of the Hausdor� distan
e between a 
ir
leand a 
osine 
urve at resolution 256� 256. There are 8 stages, 
overing resolutions 1� 1to full resolution. The number of A and B points at ea
h stage is given, followed by thenumber of bridges and the fra
tions of points that are bridgeheads.Table 1 per stage point and bridge data for Cosine to Cir
le 
al
ulationstage: 1 2 3 4 5 6 7 8A pts 4 9 21 45 92 180 344 603B pts 4 12 28 60 124 234 440 762bridges 12 39 93 193 302 380 427 82fra
 A .85 .68 .45 .30 .19 .11 .06 .015fra
 B .85 .52 .34 .23 .14 .08 .05 .012Referen
es[1℄ Ja
kson and Thoro. Applied Combinatori
s with Problem Solving. Addison{Wesley(1991), 159-163.[2℄ Shonkwiler, R. An image algorithm for 
omputing the hausdor� distan
e eÆ
ientlyin linear time, Inf. Pro
. Letters 30 (1989), 87-89.[3℄ Shonkwiler, R. Computing the Hausdor� set distan
e in linear time for any L(p) pointdistan
e. Info. Pro
. Letters 38 (1991) 201-207.8


