Return On Investment I - Averaging

Return On Investment I - Averaging

Outline:

- Definition of rate of return.
- Compounding - nominal vs effective rate.
- Continuous compounding and $e=2.71828$...
- Geometric Average.
- Arithmetic Average.

Definition of Rate of Return

We use the terms "Principle", "interest", and "interest rate" but it applies just as well to "amount invested", "return", and "rate of return".

Let P be amount invested and let ΔP be the increase in value, the return. Of course $\Delta P<0$ if there is a loss. And let the investment be in force over the time period t in years. Then the rate of return is the return per dollar
per year,

$$
r=\frac{\Delta P}{P * t}
$$

E.g. a return of $\$ 8$ on $\$ 100$ invested over 1 year is 8%.

Multiple Periods

Turning the equation around, the amount A_{1} one has after $t=1$ year is

$$
A_{1}=P+\Delta P=P+P r=P(1+r) .
$$

After $t=2$ years is (interest on interest)

$$
A_{2}=(P(1+r))(1+r)=P(1+r)^{2} .
$$

After t years (could be fractional, e.g. 3.5)

$$
A_{t}=P(1+r)^{t} .
$$

Finding r

So an investment of P which becomes the amount $A=P+\Delta P$ (equaling the investment plus the return) over any time $t(2 / 3$ of a year, 4 and $1 / 2$ years, whatever) has the rate of return given by

$$
r=\left(\frac{A}{P}\right)^{1 / t}-1=\left(1+\frac{\Delta P}{P}\right)^{1 / t}-1
$$

Compounding

Problem: $\$ 100$ invested at 8% compounded quarterly.
Use our basic equation: $A=P(1+r)^{t}$, now t counts quarters, i.e. 3 month periods, and r is the rate per quarter, $r=8 / 4=2 \%$. Over $t=4$ quarters this is

$$
A=100 *(1+.02)^{4}=108.24 .
$$

So the interest on interest earned \$0.24 and actual rate of return is 8.24%.

We say $r_{N}=8 \%$ is the "nominal" rate of return while $r_{E}=8.24 \%$ is the "effective" rate of return.

What if we compound daily, 365 times per year; over one year we have

$$
A=100 *\left(1+\frac{0.08}{365}\right)^{365}=108.3277 \ldots
$$

or $\$ 108.33$. The effective rate is 8.33%.

Continuous Compounding

Let r be the nominal rate, P the investment and suppose it is compounded k times per year with $k \rightarrow \infty$, so over 1 year

$$
A_{1}=\lim _{k \rightarrow \infty} P\left(1+\frac{r}{k}\right)^{k}=P e^{r},
$$

the exponential where $e=2.71828 \ldots$... (This formula was discovered in ancient times.)
E.g. \$100 at 8\% nominal over 1 year equals 8.33\%

effective rate

$$
100 * e^{0.08}=108.3287 \ldots
$$

Rate of Return Here

Over arbitrary time t (not just one year)

$$
A_{t}=P e^{r t} .
$$

So the nominal rate is

$$
r=\frac{1}{t} \log \frac{A_{t}}{P}=\frac{1}{t} \log \left(1+\frac{\Delta P}{P}\right) .
$$

where \log is the natural logarithm function.

Average Return, Discrete Compounding

Suppose the investment covers several quarters each with a different rate of return, e.g. $r_{1}, r_{2}, \ldots, r_{n}$. Then the amount after these n quarters is

$$
A=P\left(1+r_{1}\right)\left(1+r_{2}\right) \ldots\left(1+r_{n}\right) .
$$

We want the average quarterly rate \bar{r} giving the same return. So $A=P(1+\bar{r})^{n}$, solve for \bar{r}

$$
\bar{r}=\left(\left(1+r_{1}\right)\left(1+r_{2}\right) \ldots\left(1+r_{n}\right)\right)^{1 / n}-1 .
$$

This is called the geometric average.

Average Return, unequal periods

Maybe the last period is only partial, then what? More generally let quartely rate r_{1} apply for time t_{1} (measured in quarters), r_{2} apply for time t_{2} and so on. Then, putting $T=t_{1}+t_{2}+\ldots+t_{n}$,

$$
\bar{r}=\left(1+r_{1}\right)^{\frac{t_{1}}{T}}\left(1+r_{2}\right)^{\frac{t_{2}}{T}} \ldots\left(1+r_{n}\right)^{\frac{t_{n}}{T}}-1 .
$$

Again the geometric average.

Average Return, Continuous Compounding

Again let the investment cover several time periods t_{1}, t_{2}, \ldots, t_{n} (measured in years) with various (nominal) rates of return $r_{1}, r_{2}, \ldots, r_{n}$ over these time periods. Then the amount we have at the end is

$$
\begin{aligned}
A & =P e^{r_{1} t_{1}} e^{r_{2} t_{2}} \ldots e^{r_{n} t_{n}} \\
& =P e^{r_{1} t_{1}+r_{2} t_{2}+\ldots+r_{n} t_{n}} .
\end{aligned}
$$

Again with $T=t_{1}+t_{2}+\ldots+t_{n}$, the average rate of
return is

$$
\bar{r}=\frac{1}{T}\left(r_{1} t_{1}+r_{2} t_{2}+\ldots+r_{n} t_{n}\right) .
$$

Note this is the ordinary arithmetic average.
As you can see, continuous compounding is easier to work with.

