Kelly's Problem

Kelly's Problem

Thanks to John Elton.

Kelly's Problem

Thanks to John Elton.

Outline:

• Some Basic, Conceptual Math Facts.

- The Solution for even payoffs.
- The Solution for uneven payoffs.

Bernoulli Trials

Bernoulli Trial: a two outcome probability experiment; the probability of success is p, the probability of failure is 1-p.

If the amt gained is G > 0 and lost is L < 0 then the *expected* payoff is E = Gp + L(1 - p).

Function maximization

If y is a function of x, y = f(x), then the maximum value of y occurs where the tangent line is horizontal, this is where the derivative of f is 0,

f'(x) = 0.

There are various other technical facts I leave to you to look up.

Basic Kelly's Problem

Our fortune is X, we bet fraction f, we win the bet w/prob p and lose w/prob 1 - p; we know that p > 1/2. Initial fortune, X_0 , after one play

$$X_1 = \begin{cases} (1-f)X_0 & \text{if lose} \\ (1+f)X_0 & \text{if win} \end{cases}$$
$$X_1 = B_1X_0, \quad B_1 = \begin{cases} 1-f & \text{if lose} \\ 1+f & \text{if win} \end{cases}$$

The Basic Problem

$$X_N = B_N B_{N-1} \dots B_1 X_0$$

Key Step: maximize $W_N = \log(X_N)$

$$W_N = \sum_{i=1}^N \log B_i + \log X_0.$$

$$Y_i = \log B_i = \begin{cases} \log(1-f) & \text{w/prob } 1-p\\ \log(1+f) & \text{w/prob } p \end{cases}$$

then

$$E(Y_i) = (1-p)\log(1-f) + p\log(1+f)$$

and

 $E(W_N) = N\left[(1-p)\log(1-f) + p\log(1+f)\right] + \log X_0.$

The Basic Problem

Maximum expectation when the derivative is zero,

$$0 = \frac{-(1-p)}{(1-f)} + \frac{p}{(1+f)} = \frac{-(1-p)(1+f) + p(1-f)}{1-f^2}.$$

Gives

$$f = 2p - 1.$$

With this for f the expected growth is

 $E(W_N) = N(\log 2 + (1-p)\log(1-p) + p\log(p)) + \log X_0.$

Example.

If the probability of winning is p = 0.6, then the betting fraction is f = 2(.6) - 1 = .2 or 20%. The log grow rate is $E(W_N) = 0.02N + \log X_0$ so our fortune grows like

 $e^{.02N} = 1.02^N.$

Alternative derivation

The average rate of return \bar{r} satisfies $(1 + \bar{r})^N = X_N$. Maximize this; equivalently, maximize $1 + \bar{r}$; equivalently maximize $\log(1 + \bar{r})$. It leads to the same equation.

- Daniel Madeja, 23 April 2007, "Marble Game"
- Now we allow the investment to win or lose multiple times the bet. Suppose we only know:
- We can lose up to 5 times our bet
- the expected payoff is 0.9.

Thus we cannot bet more than 1/5 our fortune and we should not bet even that since play continues indefinitely.

"Worst case" to match the expected payoff

$$0.9 = -5(1-p) + 1p$$
, gives $p = 59/60$

Note the rule is no longer f = 2p - 1 since that is for an even payoff. We must re-derive.

Now $X_{i+1} = (1 - 5f + 6fB_i)X_i$ with $B_i = 0$ w/prob 1/60 and $B_i = 1$ w/prob 59/60.

$$W_N = \log X_N = \sum_{1}^{N} Y_i + \log X_0$$

where

$$Y_i = \begin{cases} \log(1 - 5f) & \text{w/prob } 1 - p \\ \log(1 + f) & \text{w/prob } p \end{cases}$$

Solve for maximum W_N ,

$$0 = \frac{-5(1-p)}{1-5f} + \frac{p}{1+f}$$

gives

$$f = \frac{6}{5}p - 1$$
, for $p = \frac{59}{60}$, $f = .18$

Payoffs uneven, complete information

Payoffs uneven, complete information

Proceed as before

$$W_N = \log X_N = \sum_{1}^{N} Y_i + \log X_0$$

where Y_i is

value	$\log(1-5f)$	$\log(1-2f)$	• • •	$\log(1-10f)$
prob	1/10	1/10	• • •	1/10

Payoffs uneven, complete information Maximum $E(W_N)$

$$0 = \frac{-5}{1-5f} + \frac{-2}{1-2f} + \frac{-2}{1-f} + \frac{2}{1+f} + \frac{6}{1+2f} + \frac{10}{1+10f}$$

See next foil, solution is f = 0.0774 or $7\frac{3}{4}$ %.

For this value of $f,\ E(Y)=0.0335$ so our fortune grows like

$$X_N \approx X_0 e^{0.0335N} = X_0 (1.0341)^N.$$

After 30 plays it should be $2.73X_0$ or \$273,000.

Payoffs uneven, complete information

Payoffs uneven, complete information The general formula is: solve for the smallest f in

$$0 = \sum_{i} \frac{p_i r_i}{1 + r_i f}$$

where p_i is the probability of event i, r_i is the rate of return (positive)(or loss (negative) for event i on the amount at risk (equal to fX the fraction of the fortune).