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Kelly’s Problem

Thanks to John Elton.

Outline:

• Some Basic, Conceptual Math Facts.

• The Solution for even payoffs.

• The Solution for uneven payoffs.
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Bernoulli Trials

Bernoulli Trial: a two outcome probability experiment;

the probability of success is p, the probability of failure is

1− p.

If the amt gained is G > 0 and lost is L < 0 then the

expected payoff is E = Gp + L(1− p).
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Function maximization

If y is a function of x, y = f(x), then the maximum

value of y occurs where the tangent line is horizontal,

this is where the derivative of f is 0,

f ′(x) = 0.

There are various other technical facts I leave to you to

look up.
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Basic Kelly’s Problem

Our fortune is X, we bet fraction f , we win the bet

w/prob p and lose w/prob 1− p; we know that p > 1/2.

Initial fortune, X0, after one play

X1 =
{

(1− f)X0 if lose

(1 + f)X0 if win

X1 = B1X0, B1 =
{

1− f if lose

1 + f if win
.
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The Basic Problem

XN = BNBN−1 . . . B1X0

Key Step: maximize WN = log(XN)

WN =
N∑

i=1

log Bi + log X0.
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Let

Yi = log Bi =
{

log(1− f) w/prob 1− p

log(1 + f) w/prob p

then

E(Yi) = (1− p) log(1− f) + p log(1 + f)

and

E(WN) = N [(1− p) log(1− f) + p log(1 + f)]+ log X0.
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The Basic Problem

Maximum expectation when the derivative is zero,

0 =
−(1− p)
(1− f)

+
p

(1 + f)
=
−(1− p)(1 + f) + p(1− f)

1− f 2 .

Gives

f = 2p− 1.

With this for f the expected growth is

E(WN) = N (log 2 + (1− p) log(1− p) + p log(p))+log X0.
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Example.

If the probability of winning is p = 0.6, then the betting

fraction is f = 2(.6)− 1 = .2 or 20%. The log grow rate

is E(WN) = 0.02N + log X0 so our fortune grows like

e.02N = 1.02N .
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Alternative derivation

The average rate of return r̄ satisfies (1 + r̄)N = XN .

Maximize this; equivalently, maximize 1 + r̄; equivalently

maximize log(1 + r̄). It leads to the same equation.
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Payoffs uneven, information partial

Daniel Madeja, 23 April 2007, “Marble Game”

Now we allow the investment to win or lose multiple

times the bet. Suppose we only know:

• We can lose up to 5 times our bet

• the expected payoff is 0.9.

Thus we cannot bet more than 1/5 our fortune and we

should not bet even that since play continues indefinitely.
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Payoffs uneven, information partial

“Worst case” to match the expected payoff

0.9 = −5(1− p) + 1p, gives p = 59/60

Note the rule is no longer f = 2p− 1 since that is for an

even payoff. We must re-derive.
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Payoffs uneven, information partial

Now Xi+1 = (1− 5f + 6fBi)Xi with Bi = 0 w/prob

1/60 and Bi = 1 w/prob 59/60.

WN = log XN =
N∑
1

Yi + log X0

where

Yi =
{

log(1− 5f) w/prob 1− p

log(1 + f) w/prob p
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Payoffs uneven, information partial

Solve for maximum WN ,

0 =
−5(1− p)

1− 5f
+

p

1 + f

gives

f =
6
5
p− 1, for p = 59

60, f = .18
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Payoffs uneven, complete information

payoff -5x -2x -1x +1x +2x +10x

prob. 1/10 1/10 2/10 2/10 3/10 1/10

E(payoff) = −5
1
10

− 2
1
10

− 1
2
10

+ 1
2
10

+ 2
3
10

+ 10
1
10

= 0.9.
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Payoffs uneven, complete information

Proceed as before

WN = log XN =
N∑
1

Yi + log X0

where Yi is

value log(1− 5f) log(1− 2f) . . . log(1− 10f)
prob 1/10 1/10 . . . 1/10
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Payoffs uneven, complete information

Maximum E(WN)

0 =
−5

1− 5f
+

−2
1− 2f

+
−2

1− f
+

2
1 + f

+
6

1 + 2f
+

10
1 + 10f

See next foil, solution is f = 0.0774 or 73
4%.

For this value of f , E(Y ) = 0.0335 so our fortune grows

like

XN ≈ X0e
0.0335N = X0(1.0341)N .

After 30 plays it should be 2.73X0 or $273,000.
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Payoffs uneven, complete information
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Payoffs uneven, complete information

The general formula is: solve for the smallest f in

0 =
∑

i

piri

1 + rif

where pi is the probability of event i, ri is the rate of

return (positive)(or loss (negative) for event i on the

amount at risk (equal to fX the fraction of the fortune).


