Kelly's Problem

Kelly's Problem

Thanks to John Elton.

Kelly's Problem

Thanks to John Elton.
Outline:

- Some Basic, Conceptual Math Facts.
- The Solution for even payoffs.
- The Solution for uneven payoffs.

Bernoulli Trials

Bernoulli Trial: a two outcome probability experiment; the probability of success is p, the probability of failure is $1-p$.

If the amt gained is $G>0$ and lost is $L<0$ then the expected payoff is $E=G p+L(1-p)$.

Function maximization

If y is a function of $x, y=f(x)$, then the maximum value of y occurs where the tangent line is horizontal, this is where the derivative of f is 0 ,

$$
f^{\prime}(x)=0 .
$$

There are various other technical facts I leave to you to look up.

Basic Kelly's Problem

Our fortune is X, we bet fraction f, we win the bet $\mathrm{w} / \mathrm{prob} p$ and lose $\mathrm{w} /$ prob $1-p$; we know that $p>1 / 2$. Initial fortune, X_{0}, after one play

$$
\begin{gathered}
X_{1}= \begin{cases}(1-f) X_{0} & \text { if lose } \\
(1+f) X_{0} & \text { if win }\end{cases} \\
X_{1}=B_{1} X_{0}, \quad B_{1}= \begin{cases}1-f & \text { if lose } \\
1+f & \text { if win }\end{cases}
\end{gathered}
$$

The Basic Problem

$$
X_{N}=B_{N} B_{N-1} \ldots B_{1} X_{0}
$$

Key Step: maximize $W_{N}=\log \left(X_{N}\right)$

$$
W_{N}=\sum_{i=1}^{N} \log B_{i}+\log X_{0} .
$$

Let

$$
Y_{i}=\log B_{i}= \begin{cases}\log (1-f) & \text { w } / \text { prob } 1-p \\ \log (1+f) & \text { w } / \text { prob } p\end{cases}
$$

then

$$
E\left(Y_{i}\right)=(1-p) \log (1-f)+p \log (1+f)
$$

and
$E\left(W_{N}\right)=N[(1-p) \log (1-f)+p \log (1+f)]+\log X_{0}$.

The Basic Problem

Maximum expectation when the derivative is zero,

$$
0=\frac{-(1-p)}{(1-f)}+\frac{p}{(1+f)}=\frac{-(1-p)(1+f)+p(1-f)}{1-f^{2}} .
$$

Gives

$$
f=2 p-1
$$

With this for f the expected growth is
$E\left(W_{N}\right)=N(\log 2+(1-p) \log (1-p)+p \log (p))+\log X_{0}$.

Example.

If the probability of winning is $p=0.6$, then the betting fraction is $f=2(.6)-1=.2$ or 20%. The log grow rate is $E\left(W_{N}\right)=0.02 N+\log X_{0}$ so our fortune grows like

$$
e^{.02 N}=1.02^{N} .
$$

Alternative derivation

The average rate of return \bar{r} satisfies $(1+\bar{r})^{N}=X_{N}$. Maximize this; equivalently, maximize $1+\bar{r}$; equivalently maximize $\log (1+\bar{r})$. It leads to the same equation.

Payoffs uneven, information partial

Daniel Madeja, 23 April 2007, "Marble Game"
Now we allow the investment to win or lose multiple times the bet. Suppose we only know:

- We can lose up to 5 times our bet
- the expected payoff is 0.9 .

Thus we cannot bet more than $1 / 5$ our fortune and we should not bet even that since play continues indefinitely.

Payoffs uneven, information partial

"Worst case" to match the expected payoff

$$
0.9=-5(1-p)+1 p, \quad \text { gives } p=59 / 60
$$

Note the rule is no longer $f=2 p-1$ since that is for an even payoff. We must re-derive.

Payoffs uneven, information partial

Now $X_{i+1}=\left(1-5 f+6 f B_{i}\right) X_{i}$ with $B_{i}=0 \mathrm{w} / \mathrm{prob}$ $1 / 60$ and $B_{i}=1 \mathrm{w} /$ prob $59 / 60$.

$$
W_{N}=\log X_{N}=\sum_{1}^{N} Y_{i}+\log X_{0}
$$

where

$$
Y_{i}= \begin{cases}\log (1-5 f) & \text { w } / \text { prob } 1-p \\ \log (1+f) & \text { w/prob } p\end{cases}
$$

Payoffs uneven, information partial

Solve for maximum W_{N},

$$
0=\frac{-5(1-p)}{1-5 f}+\frac{p}{1+f}
$$

gives

$$
f=\frac{6}{5} p-1, \quad \text { for } p=\frac{59}{60}, f=.18
$$

Payoffs uneven, complete information

payoff	$-5 x$	$-2 x$	$-1 x$	$+1 x$	$+2 x$	$+10 x$
prob.	$1 / 10$	$1 / 10$	$2 / 10$	$2 / 10$	$3 / 10$	$1 / 10$

$$
\begin{aligned}
E(\text { payoff }) & =-5 \frac{1}{10}-2 \frac{1}{10}-1 \frac{2}{10}+1 \frac{2}{10}+2 \frac{3}{10}+10 \frac{1}{10} \\
& =0.9
\end{aligned}
$$

Payoffs uneven, complete information

Proceed as before

$$
W_{N}=\log X_{N}=\sum_{1}^{N} Y_{i}+\log X_{0}
$$

where Y_{i} is

value	$\log (1-5 f)$	$\log (1-2 f)$	\ldots	$\log (1-10 f)$
prob	$1 / 10$	$1 / 10$	\ldots	$1 / 10$

Payoffs uneven, complete information

Maximum $E\left(W_{N}\right)$
$0=\frac{-5}{1-5 f}+\frac{-2}{1-2 f}+\frac{-2}{1-f}+\frac{2}{1+f}+\frac{6}{1+2 f}+\frac{10}{1+10 f}$
See next foil, solution is $f=0.0774$ or $7 \frac{3}{4} \%$.
For this value of $f, E(Y)=0.0335$ so our fortune grows like

$$
X_{N} \approx X_{0} e^{0.0335 N}=X_{0}(1.0341)^{N}
$$

After 30 plays it should be $2.73 X_{0}$ or $\$ 273,000$.

Payoffs uneven, complete information

Derivative Graph

Payoffs uneven, complete information

The general formula is: solve for the smallest f in

$$
0=\sum_{i} \frac{p_{i} r_{i}}{1+r_{i} f}
$$

where p_{i} is the probability of event i, r_{i} is the rate of return (positive)(or loss (negative) for event i on the amount at risk (equal to $f X$ the fraction of the fortune).

