Page 274 % make up an m-file, enzymeRate.m, with % function Yprime=enzymeRate(t,Y); % k1=0.1; km1=0.1; k2=0.1; e0=0.4; % Yprime=[k1*Y(2)*(e0-Y(1))-(km1+k2)*Y(1); % -k1*Y(2)*(e0-Y(1))+km1*Y(1)]; [t,Y]=ode23('enzymeRate',[0 100],[0; 0.8]); plot(t,Y) Page 275 vmax=10; kM=15; s=0:.1:150; v=vmax.*s./(kM+s); plot(s,v) hold on asy=vmax*ones(size(s)); plot(s,asy) x=[0 13]; y=[0 13*vmax/kM]; plot(x,y) x=[0 15.3]; y=[vmax/2 vmax/2]; plot(x,y) x=[15.3 15.3]; y=[0 vmax/2]; plot(x,y) Exercises/Experiments 1a. % Matlab cannot symbolically solve the system but we can proceed % this way: add the two equations and notice that the first terms % cancel and the second terms nearly cancel leaving -k2*c = 0. % This shows that c=0. With c=0 in either equation it is easy % to see that s=0 too. Now we find the Jacobian numerically. % Make an m-file, enzyme96.m, with % function csPrime=enzyme96(c,s); % % set values for k1, k2, km1, and e0 % k1=1; k2=2; km1=1.5; e0=5; % csPrime=[k1*s.*(e0-c)-(km1+k2)*c; -k1*s.*(e0-c)+km1*c]; % % The Jacobian = the matrix whose first column is the derivative % of the component functions with respect to c and the second % column is with respect to s. Take derivatives at c=s=0. J1=(enzyme96(0+eps,0) - enzyme96(0,0))/eps; J2=(enzyme96(0,0+eps) - enzyme96(0,0))/eps; J=[J1 J2]; % Jacobian at (0,0) eig(J) % both values neg. real, so (0,0) stable 2. % For problem 2 and 3 % Make an m-file, exer962.m, with % function Yprime=exer962(t,Y); % % Y(1)=c, Y(2)=s, Y(3)=e, Y(4)=p % k1=0.1; k2=0.1; km1=0.1; % % k1=1; k2=0.1; km1=0.025; % Yprime=[ k1*Y(3).*Y(2)-(km1+k2)*Y(1); % -k1*Y(3).*Y(2)+km1*Y(1); % -k1*Y(3).*Y(2)+(km1+k2)*Y(1); % k2*Y(1)]; % s0=0.8; e0=0.4; [t,Y]=ode23('exer962',[0 100],[0;s0; e0; 0]); plot(t,Y) 3. % continued from previous problem and rerun % for the second part change k1 and km1 above to k1=1; km1=0.025; s0=10; e0=0.4; [t,Y]=ode23('exer962',[0 100],[0;s0; e0; 0]); plot(t,Y(:,1)) % graph of c 5b. % contents of m-file exer964.m: % function Yprime=exer964(t,Y); % km1=1; k2=1; % k1=1; % Yprime=[-k1*Y(1)+k1*Y(2); k1*Y(1)-(km1+k2)*Y(2); k2*Y(2)]; % a0=1; b0=0; c0=0; [t1,Y1]=ode23('exer964',[0 7],[a0; b0; c0]); plot(t1,Y1); % now change k1 above to k1=10; note the y-axis scale [t10,Y10]=ode23('exer964',[0 7],[a0; b0; c0]); plot(t10,Y10) % compare product c directly, be sure to check the y-axis scale plot(t1,Y1(:,3),'b') hold on plot(t10,Y10(:,3),'r')