Figure 2.1.1
% percent sign introduces a comment in matlab
% an end of line completes a command, or semi-colon
% ends a command and surpresses printing results
C=(0:1:100);  % C=vector of values from 0 to 100 by ones
F=(9/5)*C+32; % F=vector, this arithmetic to each C value
plot(C,F);    % plot the F's vs the C's
xlabel('Temperature degrees C'); %label horizontal axis
ylabel('Temperature degrees F'); %label vertical axis
axis([-10,110,-30,220]);
% x scale from -10 to 110, y from -30 to 220

Page 13 % makeup a file named fig212.m with the following two % lines (without the % signs); Matlab requires % functions be defined in external files and finds % them via the MATLAB PATH % function y=fig212(x); % y=x.^3 - 2.^x; % resume this calculation fzero('fig212',10) %no semi-colon to print answer
Page 14 x=linspace(0,14); %100 equally spaced values 0 to 14 y=100*x.^3./2.^x; % .^ means term by term power, % ./ and .* mean term by term division and multiplication plot(x,y) hold on % keep axis, scale, etc of the graph fixed x=linspace(0,12); plot(x,x.^3); % plot overlaid on the previous plot plot(x,2.^x); % ditto

Exercises/Experiments 1A. % some US to metric conversions % Length: 1 inch = 2.54 cm (exactly) % Mass: 1 lb = .45359237 kg (avoirdupois pound) % Volume: 1 gallon = 3.785411784 liter (US gallon) x=0:10; y=2.54*x; plot(x,y) % plot cm vs inch % to plot kg/liter vs pounds/gallon one finds % the number of the former per 1 of the latter; % use this % 1 lb/gal = (1 lb/gal)*(1 gal/3.78 lit)*(.453 kg/lb) % cancel units so that % 1 lb/gal = .45359237/3.785411784 kg/lit.
2B. r=0:.1:1; % create vector of r values plot(r,pi*r.^2) % plot pi r squared vs r, use .^ (dot hat, not ^) % to get term by term r square, no need for .* % (dot star) since pi is a constant hold on % to overlay this graph plot(r,pi*(4/3)*r.^3); hold off % begin new plot loglog(r,pi*r.^2) % matlab automatically avoided r=0 hold on loglog(r,(4/3)*pi*r.^3) hold off x=linspace(0,1); % divide 0 to 1 into 100 subdivisions plot(x,3*5.^ x); hold on plot(x,5*3.^ x)
3. x=linspace(0,7); % vector of 100 x values plot(x,3*x.^2+5*x+7); hold on plot(x,2.^x) % or make a matrix whose 1st row=polynomial % and 2nd row=exponential M=[3*x.^2+5*x+7; 2.^x]; plot(x,M) % and plot both at once plot(x,M(1,:)./M(2,:)) % quotient of 1st row/2nd row term by term % observe the limit is 0 graphically 4. % for the 1st DE make an m-file, ex214a.m, say, containing % function yprime=ex214a(t,y); % yprime=3*y; [t,y]=ode23('ex214a',[0 1],2); plot(t,y)