Page 452 f:=.1*x^4+.1*x^3+.2*x^2+(.25-1)*x+.35;} fsolve(f,x,0..1); Exercises/Experiments 2. x:=(p+q/2)^2; y:=2*(p+q/2)*((1-p-q)+q/2); z:=1-x-y; X:=(x+y/2)^2; simplify(X-x); 3c. for part(a): u:=(2*pA*pa)^2*(1/4)+2*(2*pA*pa)*pa^2*(1/2)+(pa^2)^2; pA:=1-pa; aaxaa:= pa->(pa^2)^2/u; # similarly for AaxAa and Aaxaa for part(b): plot(aaxaa,pa=0.001..0.25); for part(c): eval(AaxAa(0.01)); 4d. with(LinearAlgebra): T:=Matrix([0,1],[1/2,1/2]); v:=Vector([1/10,3/10]); # the next to see the trend for n from 0 to 10 do evalf((T^n).v); od; # Now get the eigenvalue and eigenvector Eigenvectors(T); 6. restart; # First try F:=x-> c*x+(1-c)*p^2; x:=0; y:=F(x); w:=F(y); simplify(%); restart; F:=x-> c*x+(1-c)*p^2; y[0]:=0; for n from 1 to 10 do y[n]:=F(y[n-1]): od: simplify(y[10]);